BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 38523806)

  • 1. USING CONVOLUTIONAL NEURAL NETWORK-BASED SEGMENTATION FOR IMAGE-BASED COMPUTATIONAL FLUID DYNAMICS SIMULATIONS OF BRAIN ANEURYSMS: INITIAL EXPERIENCE IN AUTOMATED MODEL CREATION.
    Rezaeitaleshmahalleh M; Lyu Z; Mu N; Jiang J
    J Mech Med Biol; 2023 May; 23(4):. PubMed ID: 38523806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep-learning-based image segmentation for image-based computational hemodynamic analysis of abdominal aortic aneurysms: a comparison study.
    Lyu Z; King K; Rezaeitaleshmahalleh M; Pienta D; Mu N; Zhao C; Zhou W; Jiang J
    Biomed Phys Eng Express; 2023 Sep; 9(6):. PubMed ID: 37625388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image2Flow: A proof-of-concept hybrid image and graph convolutional neural network for rapid patient-specific pulmonary artery segmentation and CFD flow field calculation from 3D cardiac MRI data.
    Yao T; Pajaziti E; Quail M; Schievano S; Steeden J; Muthurangu V
    PLoS Comput Biol; 2024 Jun; 20(6):e1012231. PubMed ID: 38900817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Standardized viscosity as a source of error in computational fluid dynamic simulations of cerebral aneurysms.
    Fillingham P; Belur N; Sweem R; Barbour MC; Marsh LMM; Aliseda A; Levitt MR
    Med Phys; 2024 Feb; 51(2):1499-1508. PubMed ID: 38150511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the Risk of Intracranial Aneurysm Rupture Using Morphological and Hemodynamic Biomarkers Evaluated from Magnetic Resonance Fluid Dynamics and Computational Fluid Dynamics.
    Perera R; Isoda H; Ishiguro K; Mizuno T; Takehara Y; Terada M; Tanoi C; Naito T; Sakahara H; Hiramatsu H; Namba H; Izumi T; Wakabayashi T; Kosugi T; Onishi Y; Alley M; Komori Y; Ikeda M; Naganawa S
    Magn Reson Med Sci; 2020 Dec; 19(4):333-344. PubMed ID: 31956175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reproducibility of image-based computational models of intracranial aneurysm: a comparison between 3D rotational angiography, CT angiography and MR angiography.
    Ren Y; Chen GZ; Liu Z; Cai Y; Lu GM; Li ZY
    Biomed Eng Online; 2016 May; 15(1):50. PubMed ID: 27150439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge.
    Valen-Sendstad K; Bergersen AW; Shimogonya Y; Goubergrits L; Bruening J; Pallares J; Cito S; Piskin S; Pekkan K; Geers AJ; Larrabide I; Rapaka S; Mihalef V; Fu W; Qiao A; Jain K; Roller S; Mardal KA; Kamakoti R; Spirka T; Ashton N; Revell A; Aristokleous N; Houston JG; Tsuji M; Ishida F; Menon PG; Browne LD; Broderick S; Shojima M; Koizumi S; Barbour M; Aliseda A; Morales HG; Lefèvre T; Hodis S; Al-Smadi YM; Tran JS; Marsden AL; Vaippummadhom S; Einstein GA; Brown AG; Debus K; Niizuma K; Rashad S; Sugiyama SI; Owais Khan M; Updegrove AR; Shadden SC; Cornelissen BMW; Majoie CBLM; Berg P; Saalfield S; Kono K; Steinman DA
    Cardiovasc Eng Technol; 2018 Dec; 9(4):544-564. PubMed ID: 30203115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Computational Fluid Dynamics Rupture Challenge 2013--Phase II: Variability of Hemodynamic Simulations in Two Intracranial Aneurysms.
    Berg P; Roloff C; Beuing O; Voss S; Sugiyama S; Aristokleous N; Anayiotos AS; Ashton N; Revell A; Bressloff NW; Brown AG; Chung BJ; Cebral JR; Copelli G; Fu W; Qiao A; Geers AJ; Hodis S; Dragomir-Daescu D; Nordahl E; Bora Suzen Y; Owais Khan M; Valen-Sendstad K; Kono K; Menon PG; Albal PG; Mierka O; Münster R; Morales HG; Bonnefous O; Osman J; Goubergrits L; Pallares J; Cito S; Passalacqua A; Piskin S; Pekkan K; Ramalho S; Marques N; Sanchi S; Schumacher KR; Sturgeon J; Švihlová H; Hron J; Usera G; Mendina M; Xiang J; Meng H; Steinman DA; Janiga G
    J Biomech Eng; 2015 Dec; 137(12):121008. PubMed ID: 26473395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automating Model Generation for Image-Based Cardiac Flow Simulation.
    Kong F; Shadden SC
    J Biomech Eng; 2020 Nov; 142(11):. PubMed ID: 32766785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning-based hemodynamic prediction of carotid artery stenosis before and after surgical treatments.
    Wang S; Wu D; Li G; Zhang Z; Xiao W; Li R; Qiao A; Jin L; Liu H
    Front Physiol; 2022; 13():1094743. PubMed ID: 36703930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of hemodynamics of intracranial aneurysms between MR fluid dynamics using 3D cine phase-contrast MRI and MR-based computational fluid dynamics.
    Isoda H; Ohkura Y; Kosugi T; Hirano M; Alley MT; Bammer R; Pelc NJ; Namba H; Sakahara H
    Neuroradiology; 2010 Oct; 52(10):913-20. PubMed ID: 19967532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer-assisted extraction of intracranial aneurysms on 3D rotational angiograms for computational fluid dynamics modeling.
    Chang HH; Duckwiler GR; Valentine DJ; Chu WC
    Med Phys; 2009 Dec; 36(12):5612-21. PubMed ID: 20095274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virtual stenting of intracranial aneurysms: application of hemodynamic modification analysis.
    Song Y; Choe J; Liu H; Park KJ; Yu H; Lim OK; Kim H; Park D; Ge J; Suh DC
    Acta Radiol; 2016 Aug; 57(8):992-7. PubMed ID: 26503958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An attention residual u-net with differential preprocessing and geometric postprocessing: Learning how to segment vasculature including intracranial aneurysms.
    Mu N; Lyu Z; Rezaeitaleshmahalleh M; Tang J; Jiang J
    Med Image Anal; 2023 Feb; 84():102697. PubMed ID: 36462374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review on the reliability of hemodynamic modeling in intracranial aneurysms: why computational fluid dynamics alone cannot solve the equation.
    Berg P; Saalfeld S; Voß S; Beuing O; Janiga G
    Neurosurg Focus; 2019 Jul; 47(1):E15. PubMed ID: 31261119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning-based platform performs high detection sensitivity of intracranial aneurysms in 3D brain TOF-MRA: An external clinical validation study.
    Li Y; Zhang H; Sun Y; Fan Q; Wang L; Ji C; HuiGu ; Chen B; Zhao S; Wang D; Yu P; Li J; Yang S; Zhang C; Wang X
    Int J Med Inform; 2024 Aug; 188():105487. PubMed ID: 38761459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research on the effect of visceral artery Aneurysm's cardiac morphological variation on hemodynamic situation based on time-resolved CT-scan and computational fluid dynamics.
    Gao F; Chen B; Zhou T; Luo H
    Comput Methods Programs Biomed; 2022 Jun; 221():106928. PubMed ID: 35701249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis.
    Omodaka S; Sugiyama S; Inoue T; Funamoto K; Fujimura M; Shimizu H; Hayase T; Takahashi A; Tominaga T
    Cerebrovasc Dis; 2012; 34(2):121-9. PubMed ID: 22965244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 4D-CT angiography versus 3D-rotational angiography as the imaging modality for computational fluid dynamics of cerebral aneurysms.
    Cancelliere NM; Najafi M; Brina O; Bouillot P; Vargas MI; Lovblad KO; Krings T; Pereira VM; Steinman DA
    J Neurointerv Surg; 2020 Jun; 12(6):626-630. PubMed ID: 31772042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convolutional neural network-based automated maxillary alveolar bone segmentation on cone-beam computed tomography images.
    Fontenele RC; Gerhardt MDN; Picoli FF; Van Gerven A; Nomidis S; Willems H; Freitas DQ; Jacobs R
    Clin Oral Implants Res; 2023 Jun; 34(6):565-574. PubMed ID: 36906917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.