These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 38523806)

  • 21. Layered deep learning for automatic mandibular segmentation in cone-beam computed tomography.
    Verhelst PJ; Smolders A; Beznik T; Meewis J; Vandemeulebroucke A; Shaheen E; Van Gerven A; Willems H; Politis C; Jacobs R
    J Dent; 2021 Nov; 114():103786. PubMed ID: 34425172
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Outcome prediction of intracranial aneurysm treatment by flow diverters using machine learning.
    Paliwal N; Jaiswal P; Tutino VM; Shallwani H; Davies JM; Siddiqui AH; Rai R; Meng H
    Neurosurg Focus; 2018 Nov; 45(5):E7. PubMed ID: 30453461
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NigraNet: An automatic framework to assess nigral neuromelanin content in early Parkinson's disease using convolutional neural network.
    Gaurav R; Valabrègue R; Yahia-Chérif L; Mangone G; Narayanan S; Arnulf I; Vidailhet M; Corvol JC; Lehéricy S
    Neuroimage Clin; 2022; 36():103250. PubMed ID: 36451356
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phantom-based experimental validation of computational fluid dynamics simulations on cerebral aneurysms.
    Sun Q; Groth A; Bertram M; Waechter I; Bruijns T; Hermans R; Aach T
    Med Phys; 2010 Sep; 37(9):5054-65. PubMed ID: 20964225
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protocol and Preliminary Results of the Establishment of Intracranial Aneurysm Database for Artificial Intelligence Application Based on CTA Images.
    You W; Sun Y; Feng J; Wang Z; Li L; Chen X; Lv J; Tang Y; Deng D; Wei D; Gui S; Liu X; Liu P; Jin H; Ge H; Zhang Y
    Front Neurol; 2022; 13():932933. PubMed ID: 35928124
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Does the DSA reconstruction kernel affect hemodynamic predictions in intracranial aneurysms? An analysis of geometry and blood flow variations.
    Berg P; Saalfeld S; Voß S; Redel T; Preim B; Janiga G; Beuing O
    J Neurointerv Surg; 2018 Mar; 10(3):290-296. PubMed ID: 28465404
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep neural network-based detection and segmentation of intracranial aneurysms on 3D rotational DSA.
    Liu X; Feng J; Wu Z; Neo Z; Zhu C; Zhang P; Wang Y; Jiang Y; Mitsouras D; Li Y
    Interv Neuroradiol; 2021 Oct; 27(5):648-657. PubMed ID: 33715500
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Validation of CFD simulations of cerebral aneurysms with implication of geometric variations.
    Hoi Y; Woodward SH; Kim M; Taulbee DB; Meng H
    J Biomech Eng; 2006 Dec; 128(6):844-51. PubMed ID: 17154684
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational Fluid Dynamics for Cerebral Aneurysms in Clinical Settings.
    Ishida F; Tsuji M; Tanioka S; Tanaka K; Yoshimura S; Suzuki H
    Acta Neurochir Suppl; 2021; 132():27-32. PubMed ID: 33973025
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensitivity of CFD based hemodynamic results in rabbit aneurysm models to idealizations in surrounding vasculature.
    Zeng Z; Kallmes DF; Durka MJ; Ding Y; Lewis D; Kadirvel R; Robertson AM
    J Biomech Eng; 2010 Sep; 132(9):091009. PubMed ID: 20815643
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automatic MRI-based Three-dimensional Models of Hip Cartilage Provide Improved Morphologic and Biochemical Analysis.
    Schmaranzer F; Helfenstein R; Zeng G; Lerch TD; Novais EN; Wylie JD; Kim YJ; Siebenrock KA; Tannast M; Zheng G
    Clin Orthop Relat Res; 2019 May; 477(5):1036-1052. PubMed ID: 30998632
    [TBL] [Abstract][Full Text] [Related]  

  • 32. AI-based predictive approach via FFB propagation in a driven-cavity of Ostwald de-Waele fluid using CFD-ANN and Levenberg-Marquardt.
    Refaie Ali A; Mahmood R; Asghar A; Majeed AH; Behiry MH
    Sci Rep; 2024 May; 14(1):11024. PubMed ID: 38744984
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sensitivity of hostile hemodynamics to aneurysm geometry via unsupervised shape interpolation.
    MacDonald DE; Cancelliere NM; Pereira VM; Steinman DA
    Comput Methods Programs Biomed; 2023 Nov; 241():107762. PubMed ID: 37598472
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep learning-based recognition and segmentation of intracranial aneurysms under small sample size.
    Zhu G; Luo X; Yang T; Cai L; Yeo JH; Yan G; Yang J
    Front Physiol; 2022; 13():1084202. PubMed ID: 36601346
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-throughput 3DRA segmentation of brain vasculature and aneurysms using deep learning.
    Lin F; Xia Y; Song S; Ravikumar N; Frangi AF
    Comput Methods Programs Biomed; 2023 Mar; 230():107355. PubMed ID: 36709557
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hemodynamic Study of a Patient-Specific Intracranial Aneurysm: Comparative Assessment of Tomographic PIV, Stereoscopic PIV, In Vivo MRI and Computational Fluid Dynamics.
    Wu X; Gürzing S; Schinkel C; Toussaint M; Perinajová R; van Ooij P; Kenjereš S
    Cardiovasc Eng Technol; 2022 Jun; 13(3):428-442. PubMed ID: 34750782
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluating a 3D deep learning pipeline for cerebral vessel and intracranial aneurysm segmentation from computed tomography angiography-digital subtraction angiography image pairs.
    Patel TR; Patel A; Veeturi SS; Shah M; Waqas M; Monteiro A; Baig AA; Pinter N; Levy EI; Siddiqui AH; Tutino VM
    Neurosurg Focus; 2023 Jun; 54(6):E13. PubMed ID: 37552697
    [TBL] [Abstract][Full Text] [Related]  

  • 38. "Global" cardiac atherosclerotic burden assessed by artificial intelligence-based versus manual segmentation in
    Piri R; Edenbrandt L; Larsson M; Enqvist O; Skovrup S; Iversen KK; Saboury B; Alavi A; Gerke O; Høilund-Carlsen PF
    J Nucl Cardiol; 2022 Oct; 29(5):2531-2539. PubMed ID: 34386861
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Magnetic resonance imaging as a tool to assess reliability in simulating hemodynamics in cerebral aneurysms with a dedicated computational fluid dynamics prototype: preliminary results.
    Karmonik C; Zhang YJ; Diaz O; Klucznik R; Partovi S; Grossman RG; Britz GW
    Cardiovasc Diagn Ther; 2014 Apr; 4(2):207-12. PubMed ID: 24834416
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cerebral aneurysm image segmentation based on multi-modal convolutional neural network.
    Meng C; Yang D; Chen D
    Comput Methods Programs Biomed; 2021 Sep; 208():106285. PubMed ID: 34325378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.