These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38523806)

  • 41. Three-Dimensional Lumbosacral Reconstruction by An Artificial Intelligence-Based Automated MR Image Segmentation for Selecting the Approach of Percutaneous Endoscopic Lumbar Discectomy.
    Zhu Z; Liu E; Su Z; Chen W; Liu Z; Chen T; Lu H; Zhou J; Li Q; Pang S
    Pain Physician; 2024 Feb; 27(2):E245-E254. PubMed ID: 38324790
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluation of magnetic resonance angiography as a possible alternative to rotational angiography or computed tomography angiography for assessing cerebrovascular computational fluid dynamics.
    Yoneyama Y; Isoda H; Ishiguro K; Terada M; Kamiya M; Otsubo K; Perera R; Mizuno T; Fukuyama A; Takiguchi K; Watanabe T; Kosugi T; Komori Y; Naganawa S
    Phys Eng Sci Med; 2020 Dec; 43(4):1327-1337. PubMed ID: 33044647
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of Parent Artery Segmentation and Boundary Conditions on Hemodynamic Characteristics of Intracranial Aneurysms.
    Hua Y; Oh JH; Kim YB
    Yonsei Med J; 2015 Sep; 56(5):1328-37. PubMed ID: 26256976
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Image-based computational simulation of flow dynamics in a giant intracranial aneurysm.
    Steinman DA; Milner JS; Norley CJ; Lownie SP; Holdsworth DW
    AJNR Am J Neuroradiol; 2003 Apr; 24(4):559-66. PubMed ID: 12695182
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of manual and artificial intelligence-automated choroidal thickness segmentation of optical coherence tomography imaging in myopic adults.
    Lim ZW; Li J; Wong D; Chung J; Toh A; Lee JL; Lam C; Balakrishnan M; Chia A; Chua J; Girard M; Hoang QV; Chong R; Wong CW; Saw SM; Schmetterer L; Brennan N; Ang M
    Eye Vis (Lond); 2024 Jun; 11(1):21. PubMed ID: 38831465
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Patient-specific computational modeling of cerebral aneurysms with multiple avenues of flow from 3D rotational angiography images.
    Castro MA; Putman CM; Cebral JR
    Acad Radiol; 2006 Jul; 13(7):811-21. PubMed ID: 16777554
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Incorporating variability of patient inflow conditions into statistical models for aneurysm rupture assessment.
    Detmer FJ; Mut F; Slawski M; Hirsch S; Bijlenga P; Cebral JR
    Acta Neurochir (Wien); 2020 Mar; 162(3):553-566. PubMed ID: 32008209
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Aneurysm Neck Overestimation has a Relatively Modest Impact on Simulated Hemodynamics.
    MacDonald DE; Cancelliere NM; Pereira VM; Steinman DA
    Cardiovasc Eng Technol; 2023 Apr; 14(2):252-263. PubMed ID: 36517696
    [TBL] [Abstract][Full Text] [Related]  

  • 49. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models.
    Ford MD; Nikolov HN; Milner JS; Lownie SP; Demont EM; Kalata W; Loth F; Holdsworth DW; Steinman DA
    J Biomech Eng; 2008 Apr; 130(2):021015. PubMed ID: 18412502
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Computational Fluid Dynamics to Evaluate the Management of a Giant Internal Carotid Artery Aneurysm.
    Russin J; Babiker H; Ryan J; Rangel-Castilla L; Frakes D; Nakaji P
    World Neurosurg; 2015 Jun; 83(6):1057-65. PubMed ID: 25541083
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of blood viscosity models and boundary conditions on the computation of hemodynamic parameters in cerebral aneurysms using computational fluid dynamics.
    Yang H; Hong I; Kim YB; Cho KC; Oh JH
    Acta Neurochir (Wien); 2023 Feb; 165(2):471-482. PubMed ID: 36624234
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A deep learning framework for intracranial aneurysms automatic segmentation and detection on magnetic resonance T1 images.
    Qu J; Niu H; Li Y; Chen T; Peng F; Xia J; He X; Xu B; Chen X; Li R; Liu A; Zhang X; Li C
    Eur Radiol; 2024 May; 34(5):2838-2848. PubMed ID: 37843574
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CAST: A multi-scale convolutional neural network based automated hippocampal subfield segmentation toolbox.
    Yang Z; Zhuang X; Mishra V; Sreenivasan K; Cordes D
    Neuroimage; 2020 Sep; 218():116947. PubMed ID: 32474081
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Computational fluid dynamics-based virtual angiograms for the detection of flow stagnation in intracranial aneurysms.
    Hadad S; Karnam Y; Mut F; Lohner R; Robertson AM; Kaneko N; Cebral JR
    Int J Numer Method Biomed Eng; 2023 Aug; 39(8):e3740. PubMed ID: 37288602
    [TBL] [Abstract][Full Text] [Related]  

  • 55. DeepHeartCT: A fully automatic artificial intelligence hybrid framework based on convolutional neural network and multi-atlas segmentation for multi-structure cardiac computed tomography angiography image segmentation.
    Bui V; Hsu LY; Chang LC; Sun AY; Tran L; Shanbhag SM; Zhou W; Mehta NN; Chen MY
    Front Artif Intell; 2022; 5():1059007. PubMed ID: 36483981
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Automated segmentation of vertebral cortex with 3D U-Net-based deep convolutional neural network.
    Li Y; Yao Q; Yu H; Xie X; Shi Z; Li S; Qiu H; Li C; Qin J
    Front Bioeng Biotechnol; 2022; 10():996723. PubMed ID: 36338129
    [No Abstract]   [Full Text] [Related]  

  • 57. A computational fluid dynamics (CFD) study of WEB-treated aneurysms: Can CFD predict WEB "compression" during follow-up?
    Caroff J; Mihalea C; Da Ros V; Yagi T; Iacobucci M; Ikka L; Moret J; Spelle L
    J Neuroradiol; 2017 Jul; 44(4):262-268. PubMed ID: 28478112
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Generating wall shear stress for coronary artery in real-time using neural networks: Feasibility and initial results based on idealized models.
    Su B; Zhang JM; Zou H; Ghista D; Le TT; Chin C
    Comput Biol Med; 2020 Nov; 126():104038. PubMed ID: 33039809
    [TBL] [Abstract][Full Text] [Related]  

  • 59. OTO-Net: An Automated MRA Image Segmentation Network for Intracranial Aneurysms.
    Ye J; Xu X; Li L; Zhao J; Lai W; Zhou W; Zheng C; Wang X; Lai X
    Comput Intell Neurosci; 2022; 2022():5333589. PubMed ID: 35463249
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.