These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38524253)

  • 1. Exact learning dynamics of deep linear networks with prior knowledge.
    J Dominé CC; Braun L; Fitzgerald JE; Saxe AM
    J Stat Mech; 2023 Nov; 2023(11):114004. PubMed ID: 38524253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The deep arbitrary polynomial chaos neural network or how Deep Artificial Neural Networks could benefit from data-driven homogeneous chaos theory.
    Oladyshkin S; Praditia T; Kroeker I; Mohammadi F; Nowak W; Otte S
    Neural Netw; 2023 Sep; 166():85-104. PubMed ID: 37480771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing Kernel Machines Using Deep Learning.
    Song H; J Thiagarajan J; Sattigeri P; Spanias A
    IEEE Trans Neural Netw Learn Syst; 2018 Nov; 29(11):5528-5540. PubMed ID: 29993616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning in random neural fields: Numerical experiments via neural tangent kernel.
    Watanabe K; Sakamoto K; Karakida R; Sonoda S; Amari SI
    Neural Netw; 2023 Mar; 160():148-163. PubMed ID: 36640490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Net: Lifelong Learning via Continual Self-Modeling.
    Mandivarapu JK; Camp B; Estrada R
    Front Artif Intell; 2020; 3():19. PubMed ID: 33733138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mathematical theory of semantic development in deep neural networks.
    Saxe AM; McClelland JL; Ganguli S
    Proc Natl Acad Sci U S A; 2019 Jun; 116(23):11537-11546. PubMed ID: 31101713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On Sequential Bayesian Inference for Continual Learning.
    Kessler S; Cobb A; Rudner TGJ; Zohren S; Roberts SJ
    Entropy (Basel); 2023 May; 25(6):. PubMed ID: 37372228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Representational Similarity Learning for Analyzing Neural Signatures in Task-based fMRI Dataset.
    Yousefnezhad M; Sawalha J; Selvitella A; Zhang D
    Neuroinformatics; 2021 Jul; 19(3):417-431. PubMed ID: 33057876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical mechanics of continual learning: Variational principle and mean-field potential.
    Li C; Huang Z; Zou W; Huang H
    Phys Rev E; 2023 Jul; 108(1-1):014309. PubMed ID: 37583230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the minimax optimality and superiority of deep neural network learning over sparse parameter spaces.
    Hayakawa S; Suzuki T
    Neural Netw; 2020 Mar; 123():343-361. PubMed ID: 31901565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep convolutional neural network and IoT technology for healthcare.
    Wassan S; Dongyan H; Suhail B; Jhanjhi NZ; Xiao G; Ahmed S; Murugesan RK
    Digit Health; 2024; 10():20552076231220123. PubMed ID: 38250147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Task-specific feature extraction and classification of fMRI volumes using a deep neural network initialized with a deep belief network: Evaluation using sensorimotor tasks.
    Jang H; Plis SM; Calhoun VD; Lee JH
    Neuroimage; 2017 Jan; 145(Pt B):314-328. PubMed ID: 27079534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Minimum perturbation theory of deep perceptual learning.
    Shan H; Sompolinsky H
    Phys Rev E; 2022 Dec; 106(6-1):064406. PubMed ID: 36671118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast generalization error bound of deep learning without scale invariance of activation functions.
    Terada Y; Hirose R
    Neural Netw; 2020 Sep; 129():344-358. PubMed ID: 32593931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orthogonal representations for robust context-dependent task performance in brains and neural networks.
    Flesch T; Juechems K; Dumbalska T; Saxe A; Summerfield C
    Neuron; 2022 Apr; 110(7):1258-1270.e11. PubMed ID: 35085492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Where do features come from?
    Hinton G
    Cogn Sci; 2014 Aug; 38(6):1078-101. PubMed ID: 23800216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning for computational chemistry.
    Goh GB; Hodas NO; Vishnu A
    J Comput Chem; 2017 Jun; 38(16):1291-1307. PubMed ID: 28272810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep neural mapping support vector machines.
    Li Y; Zhang T
    Neural Netw; 2017 Sep; 93():185-194. PubMed ID: 28646763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continual Multiview Task Learning via Deep Matrix Factorization.
    Sun G; Cong Y; Zhang Y; Zhao G; Fu Y
    IEEE Trans Neural Netw Learn Syst; 2021 Jan; 32(1):139-150. PubMed ID: 32175877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wide and deep neural networks achieve consistency for classification.
    Radhakrishnan A; Belkin M; Uhler C
    Proc Natl Acad Sci U S A; 2023 Apr; 120(14):e2208779120. PubMed ID: 36996114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.