BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38524438)

  • 1. Fracture Conductivity Prediction Based on Machine Learning.
    Wang X; Zhang B; Du J; Liu D; Zhang Q; Liu X
    ACS Omega; 2024 Mar; 9(11):13469-13480. PubMed ID: 38524438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study of fracture conductivity prediction using ensemble methods in the acid fracturing treatment in oil wells.
    Kharazi Esfahani P; Akbari M; Khalili Y
    Sci Rep; 2024 Jan; 14(1):648. PubMed ID: 38182684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine Learning-Based Propped Fracture Conductivity Correlations of Several Shale Formations.
    Desouky M; Tariq Z; Aljawad MS; Alhoori H; Mahmoud M; Abdulraheem A
    ACS Omega; 2021 Jul; 6(29):18782-18792. PubMed ID: 34337218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data-Driven Acid Fracture Conductivity Correlations Honoring Different Mineralogy and Etching Patterns.
    Desouky M; Tariq Z; Aljawad MS; Alhoori H; Mahmoud M; AlShehri D
    ACS Omega; 2020 Jul; 5(27):16919-16931. PubMed ID: 32685861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation on the influence factors for the fracturing effect in fractured tight reservoirs using the numerical simulation.
    Xiong J; Liu J; Lei W; Liu X; Liang L; Ding Y
    Sci Prog; 2022; 105(1):368504211070396. PubMed ID: 35037795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of tight gas reservoir fracturing parameters via gradient boosting regression modeling.
    Yang H; Liu X; Chu X; Xie B; Zhu G; Li H; Yang J
    Heliyon; 2024 Mar; 10(5):e27015. PubMed ID: 38463839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning-based fracturing parameter optimization for horizontal wells in Panke field shale oil.
    Li W; Zhang T; Liu X; Dong Z; Dong G; Qian S; Yang Z; Zou L; Lin K; Zhang T
    Sci Rep; 2024 Mar; 14(1):6046. PubMed ID: 38472299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental Study on the Effects of Pore Pressure and Slippage on the Permeability of a Fracture Network during Depressurization of Shale Gas Reservoir Production.
    Zhao H; Liang B; Sun W; Hu Z; Sun J; Hao J; Liu Q
    ACS Omega; 2022 Apr; 7(16):13644-13653. PubMed ID: 35559137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative Experimental Study of Fracture Conductivity of Carbonate Rocks under Different Stimulation Types.
    Xiao H; Xia X; Wang C; Tan X; Zhang H
    ACS Omega; 2023 Dec; 8(51):49175-49190. PubMed ID: 38162798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydraulic fracturing: New uncertainty based modeling approach for process design using Monte Carlo simulation technique.
    Quosay AA; Knez D; Ziaja J
    PLoS One; 2020; 15(7):e0236726. PubMed ID: 32726370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Artificial Intelligence-Based Model for Performance Prediction of Acid Fracturing in Naturally Fractured Reservoirs.
    Hassan A; Aljawad MS; Mahmoud M
    ACS Omega; 2021 Jun; 6(21):13654-13670. PubMed ID: 34095659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting the hydraulic conductivity of compacted soil barriers in landfills using machine learning techniques.
    Tan Y; Zhang P; Chen J; Shamet R; Hyun Nam B; Pu H
    Waste Manag; 2023 Feb; 157():357-366. PubMed ID: 36630884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of machine learning model in predicting the likelihood of blood transfusion after hip fracture surgery.
    Chen X; Pan J; Li Y; Tang R
    Aging Clin Exp Res; 2023 Nov; 35(11):2643-2656. PubMed ID: 37733228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanomaterials and Technology Applications for Hydraulic Fracturing of Unconventional Oil and Gas Reservoirs: A State-of-the-Art Review of Recent Advances and Perspectives.
    Mao Z; Cheng L; Liu D; Li T; Zhao J; Yang Q
    ACS Omega; 2022 Aug; 7(34):29543-29570. PubMed ID: 36061652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental analysis of multiple factors on hydraulic fracturing in coalbed methane reservoirs.
    Zhang F; Ma G; Liu X; Tao Y; Feng D; Li R
    PLoS One; 2018; 13(4):e0195363. PubMed ID: 29621295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning-Based Accelerated Approaches to Infer Breakdown Pressure of Several Unconventional Rock Types.
    Tariq Z; Yan B; Sun S; Gudala M; Aljawad MS; Murtaza M; Mahmoud M
    ACS Omega; 2022 Nov; 7(45):41314-41330. PubMed ID: 36406508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation and Application of High-Efficiency Network Fracturing Technology for Deep Shale Gas in the Southern Sichuan Basin.
    Zhao Z; Zheng Y; Zeng B; Song Y
    ACS Omega; 2022 Apr; 7(16):14276-14282. PubMed ID: 35573210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental Study to Quantify Fracture Propagation in Hydraulic Fracturing Treatment.
    He P; Pan L; Lu Z; Zhou J; Meng C; Yu H
    ACS Omega; 2022 Aug; 7(31):27490-27502. PubMed ID: 35967015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of gas production from shale reservoirs with multi-stage hydraulic fracturing horizontal well considering multiple transport mechanisms.
    Guo C; Wei M; Liu H
    PLoS One; 2018; 13(1):e0188480. PubMed ID: 29320489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poromechanical Modeling and Numerical Simulation of Hydraulic Fracture Propagation.
    Zhang X; Cao Y; Wang L; Xiaohui G
    ACS Omega; 2022 Jul; 7(29):25003-25012. PubMed ID: 35910150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.