These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38524738)

  • 1. Time-Series Field Phenotyping of Soybean Growth Analysis by Combining Multimodal Deep Learning and Dynamic Modeling.
    Yu H; Weng L; Wu S; He J; Yuan Y; Wang J; Xu X; Feng X
    Plant Phenomics; 2024; 6():0158. PubMed ID: 38524738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of Off-Target Dicamba Damage on Soybean Using UAV Imagery and Deep Learning.
    Tian F; Vieira CC; Zhou J; Zhou J; Chen P
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining UAV-RGB high-throughput field phenotyping and genome-wide association study to reveal genetic variation of rice germplasms in dynamic response to drought stress.
    Jiang Z; Tu H; Bai B; Yang C; Zhao B; Guo Z; Liu Q; Zhao H; Yang W; Xiong L; Zhang J
    New Phytol; 2021 Oct; 232(1):440-455. PubMed ID: 34165797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clustering Field-Based Maize Phenotyping of Plant-Height Growth and Canopy Spectral Dynamics Using a UAV Remote-Sensing Approach.
    Han L; Yang G; Yang H; Xu B; Li Z; Yang X
    Front Plant Sci; 2018; 9():1638. PubMed ID: 30483291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Analysis of Cotton Canopy Size in Field Conditions Using a Consumer-Grade RGB-D Camera.
    Jiang Y; Li C; Paterson AH; Sun S; Xu R; Robertson J
    Front Plant Sci; 2017; 8():2233. PubMed ID: 29441074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated extraction of
    Ji Y; Yan E; Yin X; Song Y; Wei W; Mo D
    Front Plant Sci; 2022; 13():958940. PubMed ID: 36035664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning for high-throughput field phenotyping and image processing provides insight into the association of above and below-ground traits in cassava (
    Selvaraj MG; Valderrama M; Guzman D; Valencia M; Ruiz H; Acharjee A
    Plant Methods; 2020; 16():87. PubMed ID: 32549903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of UAV Multisensor Data and Ensemble Approach for High-Throughput Estimation of Maize Phenotyping Traits.
    Shu M; Fei S; Zhang B; Yang X; Guo Y; Li B; Ma Y
    Plant Phenomics; 2022; 2022():9802585. PubMed ID: 36158531
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Sadeghi-Tehran P; Virlet N; Ampe EM; Reyns P; Hawkesford MJ
    Front Plant Sci; 2019; 10():1176. PubMed ID: 31616456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improve Soybean Variety Selection Accuracy Using UAV-Based High-Throughput Phenotyping Technology.
    Zhou J; Beche E; Vieira CC; Yungbluth D; Zhou J; Scaboo A; Chen P
    Front Plant Sci; 2021; 12():768742. PubMed ID: 35087547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved Accuracy of High-Throughput Phenotyping From Unmanned Aerial Systems by Extracting Traits Directly From Orthorectified Images.
    Wang X; Silva P; Bello NM; Singh D; Evers B; Mondal S; Espinosa FP; Singh RP; Poland J
    Front Plant Sci; 2020; 11():587093. PubMed ID: 33193537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of different ground segmentation methods on the accuracy of UAV-based canopy volume measurements.
    Han L; Wang Z; He M; He X
    Front Plant Sci; 2024; 15():1393592. PubMed ID: 38957596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput phenotyping for non-destructive estimation of soybean fresh biomass using a machine learning model and temporal UAV data.
    Ranđelović P; Đorđević V; Miladinović J; Prodanović S; Ćeran M; Vollmann J
    Plant Methods; 2023 Aug; 19(1):89. PubMed ID: 37633921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Throughput Phenotyping of Canopy Cover and Senescence in Maize Field Trials Using Aerial Digital Canopy Imaging.
    Makanza R; Zaman-Allah M; Cairns JE; Magorokosho C; Tarekegne A; Olsen M; Prasanna BM
    Remote Sens (Basel); 2018 Feb; 10(2):330. PubMed ID: 33489316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A real-time phenotyping framework using machine learning for plant stress severity rating in soybean.
    Naik HS; Zhang J; Lofquist A; Assefa T; Sarkar S; Ackerman D; Singh A; Singh AK; Ganapathysubramanian B
    Plant Methods; 2017; 13():23. PubMed ID: 28405214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soybean iron deficiency chlorosis high throughput phenotyping using an unmanned aircraft system.
    Dobbels AA; Lorenz AJ
    Plant Methods; 2019; 15():97. PubMed ID: 31452673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of Soybean Lodging Using UAV Imagery and Machine Learning.
    Sarkar S; Zhou J; Scaboo A; Zhou J; Aloysius N; Lim TT
    Plants (Basel); 2023 Aug; 12(16):. PubMed ID: 37631105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the efficiency of soybean breeding with high-throughput canopy phenotyping.
    Moreira FF; Hearst AA; Cherkauer KA; Rainey KM
    Plant Methods; 2019; 15():139. PubMed ID: 31827576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating Maize Genotype Performance under Low Nitrogen Conditions Using RGB UAV Phenotyping Techniques.
    Buchaillot ML; Gracia-Romero A; Vergara-Diaz O; Zaman-Allah MA; Tarekegne A; Cairns JE; Prasanna BM; Araus JL; Kefauver SC
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 30995754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput soybean seeds phenotyping with convolutional neural networks and transfer learning.
    Yang S; Zheng L; He P; Wu T; Sun S; Wang M
    Plant Methods; 2021 May; 17(1):50. PubMed ID: 33952294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.