BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 38524827)

  • 1. Comparison of NIRS exercise intensity thresholds with maximal lactate steady state, critical power and rowing performance.
    Possamai LT; Borszcz FK; de Aguiar RA; de Lucas RD; Turnes T
    Biol Sport; 2024 Mar; 41(2):123-130. PubMed ID: 38524827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Agreement of maximal lactate steady state with critical power and physiological thresholds in rowing.
    Possamai LT; Borszcz FK; de Aguiar RA; de Lucas RD; Turnes T
    Eur J Sport Sci; 2022 Mar; 22(3):371-380. PubMed ID: 33428539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exercise Intensity Thresholds: Identifying the Boundaries of Sustainable Performance.
    Keir DA; Fontana FY; Robertson TC; Murias JM; Paterson DH; Kowalchuk JM; Pogliaghi S
    Med Sci Sports Exerc; 2015 Sep; 47(9):1932-40. PubMed ID: 25606817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Training-Induced Changes in the Respiratory Compensation Point, Deoxyhemoglobin Break Point, and Maximal Lactate Steady State: Evidence of Equivalence.
    Inglis EC; Iannetta D; Keir DA; Murias JM
    Int J Sports Physiol Perform; 2020 Jan; 15(1):119-125. PubMed ID: 31034305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Association Between Deoxygenated Hemoglobin Breaking Point, Anaerobic Threshold, and Rowing Performance.
    Turnes T; Penteado Dos Santos R; de Aguiar RA; Loch T; Possamai LT; Caputo F
    Int J Sports Physiol Perform; 2019 Sep; 14(8):1103-1109. PubMed ID: 30702376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of maximal lactate steady state response in selected sports events.
    Beneke R; von Duvillard SP
    Med Sci Sports Exerc; 1996 Feb; 28(2):241-6. PubMed ID: 8775160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic threshold, individual anaerobic threshold, and maximal lactate steady state in rowing.
    Beneke R
    Med Sci Sports Exerc; 1995 Jun; 27(6):863-7. PubMed ID: 7658947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle Oxidative Capacity
    Possamai LT; de Aguiar RA; Borszcz FK; do Nascimento Salvador PC; de Lucas RD; Turnes T
    Res Q Exerc Sport; 2023 Dec; 94(4):1020-1027. PubMed ID: 36048498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can measures of critical power precisely estimate the maximal metabolic steady-state?
    Mattioni Maturana F; Keir DA; McLay KM; Murias JM
    Appl Physiol Nutr Metab; 2016 Nov; 41(11):1197-1203. PubMed ID: 27819154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A longitudinal study on the interchangeable use of whole-body and local exercise thresholds in cycling.
    Caen K; Bourgois JG; Stassijns E; Boone J
    Eur J Appl Physiol; 2022 Jul; 122(7):1657-1670. PubMed ID: 35435465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dependence of the maximal lactate steady state on the motor pattern of exercise.
    Beneke R; Leithäuser RM; Hütler M
    Br J Sports Med; 2001 Jun; 35(3):192-6. PubMed ID: 11375880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exercise Thresholds on Trial: Are They Really Equivalent?
    Caen K; Vermeire K; Bourgois JG; Boone J
    Med Sci Sports Exerc; 2018 Jun; 50(6):1277-1284. PubMed ID: 29315165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of muscle near-infrared spectroscopy (NIRS) to assess the aerobic training loads of world-class rowers.
    Klusiewicz A; Rębiś K; Ozimek M; Czaplicki A
    Biol Sport; 2021 Oct; 38(4):713-719. PubMed ID: 34937982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of maximal lactate steady state with anaerobic threshold determined by various methods based on graded exercise test with 3-minute stages in elite cyclists.
    Płoszczyca K; Jazic D; Piotrowicz Z; Chalimoniuk M; Langfort J; Czuba M
    BMC Sports Sci Med Rehabil; 2020 Nov; 12(1):70. PubMed ID: 33292555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical power during an incremental test can be estimated from 2000-m rowing ergometer performance.
    Turnes T; Possamai LT; Penteado Dos Santos R; de Aguiar RA; Ribeiro G; Caputo F
    J Sports Med Phys Fitness; 2020 Feb; 60(2):214-219. PubMed ID: 31663313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoxia equally reduces the respiratory compensation point and the NIRS-derived [HHb] breakpoint during a ramp-incremental test in young active males.
    Azevedo RDA; J E BS; Inglis EC; Iannetta D; Murias JM
    Physiol Rep; 2020 Jun; 8(12):e14478. PubMed ID: 32592338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlations between lactate and ventilatory thresholds and the maximal lactate steady state in elite cyclists.
    Van Schuylenbergh R; Vanden Eynde B; Hespel P
    Int J Sports Med; 2004 Aug; 25(6):403-8. PubMed ID: 15346226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maximal lactate steady state determination with a single incremental test exercise.
    Laplaud D; Guinot M; Favre-Juvin A; Flore P
    Eur J Appl Physiol; 2006 Mar; 96(4):446-52. PubMed ID: 16341873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of the fraction of inspired oxygen on the NIRS-derived deoxygenated hemoglobin "breakpoint" during ramp-incremental test.
    Azevedo RA; Béjar Saona JE; Inglis EC; Iannetta D; Murias JM
    Am J Physiol Regul Integr Comp Physiol; 2020 Feb; 318(2):R399-R409. PubMed ID: 31850819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blood lactate concentration at the maximal lactate steady state is not dependent on endurance capacity in healthy recreationally trained individuals.
    Smekal G; von Duvillard SP; Pokan R; Hofmann P; Braun WA; Arciero PJ; Tschan H; Wonisch M; Baron R; Bachl N
    Eur J Appl Physiol; 2012 Aug; 112(8):3079-86. PubMed ID: 22194004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.