BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 38525029)

  • 1. Heritable variation in thermal profiles is associated with reproductive success in the world's largest bird.
    Svensson EI; Schou MF; Melgar J; Waller J; Engelbrecht A; Brand Z; Cloete S; Cornwallis CK
    Evol Lett; 2024 Apr; 8(2):200-211. PubMed ID: 38525029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seasonal variation in the thermal responses to changing environmental temperature in the world's northernmost land bird.
    Nord A; Folkow LP
    J Exp Biol; 2018 Jan; 221(Pt 1):. PubMed ID: 29113988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat for nothing or activity for free? Evidence and implications of activity-thermoregulatory heat substitution.
    Humphries MM; Careau V
    Integr Comp Biol; 2011 Sep; 51(3):419-31. PubMed ID: 21700569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geographic variation in responses of European yellow dung flies to thermal stress.
    Bauerfeind SS; Sørensen JG; Loeschcke V; Berger D; Broder ED; Geiger M; Ferrari M; Blanckenhorn WU
    J Therm Biol; 2018 Apr; 73():41-49. PubMed ID: 29549990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of heat and cold tolerance of a freeze-tolerant soil invertebrate distributed from temperate to Arctic regions: evidence of selection for extreme cold tolerance.
    Holmstrup M; Sørensen JG; Dai W; Krogh PH; Schmelz RM; Slotsbo S
    J Comp Physiol B; 2022 Jul; 192(3-4):435-445. PubMed ID: 35312816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary trade-offs between heat and cold tolerance limit responses to fluctuating climates.
    Schou MF; Engelbrecht A; Brand Z; Svensson EI; Cloete S; Cornwallis CK
    Sci Adv; 2022 May; 8(21):eabn9580. PubMed ID: 35622916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can newts cope with the heat? Disparate thermoregulatory strategies of two sympatric species in water.
    Balogová M; Gvoždík L
    PLoS One; 2015; 10(5):e0128155. PubMed ID: 25993482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extreme temperatures compromise male and female fertility in a large desert bird.
    Schou MF; Bonato M; Engelbrecht A; Brand Z; Svensson EI; Melgar J; Muvhali PT; Cloete SWP; Cornwallis CK
    Nat Commun; 2021 Feb; 12(1):666. PubMed ID: 33531493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The genetic basis and adult reproductive consequences of developmental thermal plasticity.
    Rodrigues LR; Zwoinska MK; Wiberg RAW; Snook RR
    J Anim Ecol; 2022 Jun; 91(6):1119-1134. PubMed ID: 35060127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How seasonality influences the thermal biology of lizards with different thermoregulatory strategies: a meta-analysis.
    Giacometti D; Palaoro AV; Leal LC; de Barros FC
    Biol Rev Camb Philos Soc; 2024 Apr; 99(2):409-429. PubMed ID: 37872698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hindered and constrained: limited potential for thermal adaptation in post-metamorphic and adult Rana temporaria along elevational gradients.
    Enriquez-Urzelai U; Palacio AS; Merino NM; Sacco M; Nicieza AG
    J Evol Biol; 2018 Dec; 31(12):1852-1862. PubMed ID: 30256481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Too hot to handle? Behavioural plasticity during incubation in a small, Australian passerine.
    Sharpe LL; Bayter C; Gardner JL
    J Therm Biol; 2021 May; 98():102921. PubMed ID: 34016345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nest construction by a ground-nesting bird represents a potential trade-off between egg crypticity and thermoregulation.
    Mayer PM; Smith LM; Ford RG; Watterson DC; McCutchen MD; Ryan MR
    Oecologia; 2009 Apr; 159(4):893-901. PubMed ID: 19145449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluctuating heat stress during development exposes reproductive costs and putative benefits.
    Rodrigues LR; McDermott HA; Villanueva I; Djukarić J; Ruf LC; Amcoff M; Snook RR
    J Anim Ecol; 2022 Feb; 91(2):391-403. PubMed ID: 34775602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of thermal stress during rest and exercise in the paediatric population.
    Falk B
    Sports Med; 1998 Apr; 25(4):221-40. PubMed ID: 9587181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A general model of the thermal constraints on the world's most destructive locust, Schistocerca gregaria.
    Maeno KO; Piou C; Kearney MR; Ould Ely S; Ould Mohamed S; Jaavar MEH; Ould Babah Ebbe MA
    Ecol Appl; 2021 Jun; 31(4):e02310. PubMed ID: 33605475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulate or tolerate: Thermal strategy of a coral reef flat resident, the epaulette shark, Hemiscyllium ocellatum.
    Nay TJ; Longbottom RJ; Gervais CR; Johansen JL; Steffensen JF; Rummer JL; Hoey AS
    J Fish Biol; 2021 Mar; 98(3):723-732. PubMed ID: 33206373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoregulatory consequences of growing up during a heatwave or a cold snap in Japanese quail.
    Persson E; Ó Cuív C; Nord A
    J Exp Biol; 2024 Jan; 227(2):. PubMed ID: 38073475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential for adaptation to climate change: family-level variation in fitness-related traits and their responses to heat waves in a snail population.
    Leicht K; Seppälä K; Seppälä O
    BMC Evol Biol; 2017 Jun; 17(1):140. PubMed ID: 28619023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hot and not-so-hot females: reproductive state and thermal preferences of female Arizona Bark Scorpions (Centruroides sculpturatus).
    Webber MM; Gibbs AG; Rodríguez-Robles JA
    J Evol Biol; 2015 Feb; 28(2):368-75. PubMed ID: 25495081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.