These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38525446)

  • 1. Diffusion Models To Predict 3D Late Mechanical Activation From Sparse 2D Cardiac MRIs.
    Jayakumar N; Xing J; Hossain T; Epstein F; Bilchick K; Zhang M
    Proc Mach Learn Res; 2023 Dec; 225():190-200. PubMed ID: 38525446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SADIR: Shape-Aware Diffusion Models for 3D Image Reconstruction.
    Jayakumar N; Hossain T; Zhang M
    Shape Med Imaging (2023); 2023 Oct; 14350():287-300. PubMed ID: 38550968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Left ventricular lead position, mechanical activation, and myocardial scar in relation to left ventricular reverse remodeling and clinical outcomes after cardiac resynchronization therapy: A feature-tracking and contrast-enhanced cardiovascular magnetic resonance study.
    Taylor RJ; Umar F; Panting JR; Stegemann B; Leyva F
    Heart Rhythm; 2016 Feb; 13(2):481-9. PubMed ID: 26498258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volumetric MRI with sparse sampling for MR-guided 3D motion tracking via sparse prior-augmented implicit neural representation learning.
    Liu L; Shen L; Johansson A; Balter JM; Cao Y; Vitzthum L; Xing L
    Med Phys; 2024 Apr; 51(4):2526-2537. PubMed ID: 38014764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D cine-magnetic resonance imaging using spatial and temporal implicit neural representation learning (STINR-MR).
    Shao HC; Mengke T; Deng J; Zhang Y
    Phys Med Biol; 2024 Apr; 69(9):. PubMed ID: 38479004
    [No Abstract]   [Full Text] [Related]  

  • 6. Shape registration with learned deformations for 3D shape reconstruction from sparse and incomplete point clouds.
    Chen X; Ravikumar N; Xia Y; Attar R; Diaz-Pinto A; Piechnik SK; Neubauer S; Petersen SE; Frangi AF
    Med Image Anal; 2021 Dec; 74():102228. PubMed ID: 34563860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiac MRI segmentation with sparse annotations: Ensembling deep learning uncertainty and shape priors.
    Guo F; Ng M; Kuling G; Wright G
    Med Image Anal; 2022 Oct; 81():102532. PubMed ID: 35872359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Joint Deep Learning Framework for Image Registration and Segmentation of Late Gadolinium Enhanced MRI and Cine Cardiac MRI.
    Upendra RR; Simon R; Linte CA
    Proc SPIE Int Soc Opt Eng; 2021 Feb; 11598():. PubMed ID: 34079155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D cine-magnetic resonance imaging using spatial and temporal implicit neural representation learning (STINR-MR).
    Shao HC; Mengke T; Deng J; Zhang Y
    ArXiv; 2023 Aug; ():. PubMed ID: 37645038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep complex convolutional network for fast reconstruction of 3D late gadolinium enhancement cardiac MRI.
    El-Rewaidy H; Neisius U; Mancio J; Kucukseymen S; Rodriguez J; Paskavitz A; Menze B; Nezafat R
    NMR Biomed; 2020 Jul; 33(7):e4312. PubMed ID: 32352197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real time volumetric MRI for 3D motion tracking via geometry-informed deep learning.
    Liu L; Shen L; Johansson A; Balter JM; Cao Y; Chang D; Xing L
    Med Phys; 2022 Sep; 49(9):6110-6119. PubMed ID: 35766221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Image-based reconstruction of three-dimensional myocardial infarct geometry for patient-specific modeling of cardiac electrophysiology.
    Ukwatta E; Arevalo H; Rajchl M; White J; Pashakhanloo F; Prakosa A; Herzka DA; McVeigh E; Lardo AC; Trayanova NA; Vadakkumpadan F
    Med Phys; 2015 Aug; 42(8):4579-90. PubMed ID: 26233186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DeepOrganNet: On-the-Fly Reconstruction and Visualization of 3D / 4D Lung Models from Single-View Projections by Deep Deformation Network.
    Wang Y; Zhong Z; Hua J
    IEEE Trans Vis Comput Graph; 2020 Jan; 26(1):960-970. PubMed ID: 31442979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iterated Residual Graph Convolutional Neural Network for Personalized Three-Dimensional Reconstruction of Left Myocardium from Cardiac MR Images.
    Wang X; Yuan Y; Liu M; Niu Y
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A completely automated pipeline for 3D reconstruction of human heart from 2D cine magnetic resonance slices.
    Banerjee A; Camps J; Zacur E; Andrews CM; Rudy Y; Choudhury RP; Rodriguez B; Grau V
    Philos Trans A Math Phys Eng Sci; 2021 Dec; 379(2212):20200257. PubMed ID: 34689630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Object recognition in medical images via anatomy-guided deep learning.
    Jin C; Udupa JK; Zhao L; Tong Y; Odhner D; Pednekar G; Nag S; Lewis S; Poole N; Mannikeri S; Govindasamy S; Singh A; Camaratta J; Owens S; Torigian DA
    Med Image Anal; 2022 Oct; 81():102527. PubMed ID: 35830745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MeshLifter: Weakly Supervised Approach for 3D Human Mesh Reconstruction from a Single 2D Pose Based on Loop Structure.
    Jeong S; Chang JY
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated 3D Whole-Heart Mesh Reconstruction From 2D Cine MR Slices Using Statistical Shape Model.
    Banerjee A; Zacur E; Choudhury RP; Grau V
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1702-1706. PubMed ID: 36086304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully automated segmentation of left ventricular scar from 3D late gadolinium enhancement magnetic resonance imaging using a cascaded multi-planar U-Net (CMPU-Net).
    Zabihollahy F; Rajchl M; White JA; Ukwatta E
    Med Phys; 2020 Apr; 47(4):1645-1655. PubMed ID: 31955415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.