These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Applied tutorial for the design and fabrication of biomicrofluidic devices by resin 3D printing. Musgrove HB; Catterton MA; Pompano RR Anal Chim Acta; 2022 May; 1209():339842. PubMed ID: 35569850 [TBL] [Abstract][Full Text] [Related]
9. Custom 3D printer and resin for 18 μm × 20 μm microfluidic flow channels. Gong H; Bickham BP; Woolley AT; Nordin GP Lab Chip; 2017 Aug; 17(17):2899-2909. PubMed ID: 28726927 [TBL] [Abstract][Full Text] [Related]
10. A novel all-3D-printed cell-on-a-chip device as a useful electroanalytical tool: Application to the simultaneous voltammetric determination of caffeine and paracetamol. Katseli V; Economou A; Kokkinos C Talanta; 2020 Feb; 208():120388. PubMed ID: 31816700 [TBL] [Abstract][Full Text] [Related]
11. Design and characterization of a 3D-printed staggered herringbone mixer. Shenoy VJ; Edwards CE; Helgeson ME; Valentine MT Biotechniques; 2021 May; 70(5):285-289. PubMed ID: 34000813 [TBL] [Abstract][Full Text] [Related]
12. Moving from millifluidic to truly microfluidic sub-100-μm cross-section 3D printed devices. Beauchamp MJ; Nordin GP; Woolley AT Anal Bioanal Chem; 2017 Jul; 409(18):4311-4319. PubMed ID: 28612085 [TBL] [Abstract][Full Text] [Related]
13. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components. Ahmed I; Sullivan K; Priye A Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047 [TBL] [Abstract][Full Text] [Related]
14. 3D Printed Multimaterial Microfluidic Valve. Keating SJ; Gariboldi MI; Patrick WG; Sharma S; Kong DS; Oxman N PLoS One; 2016; 11(8):e0160624. PubMed ID: 27525809 [TBL] [Abstract][Full Text] [Related]