These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 38526177)
21. Small duct and large duct type intrahepatic cholangiocarcinoma reveal distinct patterns of immune signatures. Bernatz S; Schulze F; Bein J; Bankov K; Mahmoudi S; Grünewald LD; Koch V; Stehle A; Schnitzbauer AA; Walter D; Finkelmeier F; Zeuzem S; Vogl TJ; Wild PJ; Kinzler MN J Cancer Res Clin Oncol; 2024 Jul; 150(7):357. PubMed ID: 39034327 [TBL] [Abstract][Full Text] [Related]
22. Combination therapies for targeting FGFR2 fusions in cholangiocarcinoma. Saborowski A; Vogel A; Segatto O Trends Cancer; 2022 Feb; 8(2):83-86. PubMed ID: 34840108 [TBL] [Abstract][Full Text] [Related]
23. Molecular profiling of intrahepatic cholangiocarcinoma: the search for new therapeutic targets. Oliveira DV; Zhang S; Chen X; Calvisi DF; Andersen JB Expert Rev Gastroenterol Hepatol; 2017 Apr; 11(4):349-356. PubMed ID: 28162004 [TBL] [Abstract][Full Text] [Related]
24. YTHDF1 promotes intrahepatic cholangiocarcinoma progression via regulating EGFR mRNA translation. Huang X; Zhu L; Wang L; Huang W; Tan L; Liu H; Huo J; Su T; Zhang M; Kuang M; Li X; Dai Z; Xu L J Gastroenterol Hepatol; 2022 Jun; 37(6):1156-1168. PubMed ID: 35233828 [TBL] [Abstract][Full Text] [Related]
25. An immunostaining panel of C-reactive protein, N-cadherin, and S100 calcium binding protein P is useful for intrahepatic cholangiocarcinoma subtyping. Akita M; Sawada R; Komatsu M; Suleman N; Itoh T; Ajiki T; Heaton N; Fukumoto T; Zen Y Hum Pathol; 2021 Mar; 109():45-52. PubMed ID: 33321161 [TBL] [Abstract][Full Text] [Related]
26. Integrative analysis reveals different feature of intrahepatic cholangiocarcinoma subtypes. Chen Z; Gao J; Li Z; Ma D; Wang Y; Cheng Q; Zhu J; Li Z Liver Int; 2024 Sep; 44(9):2477-2493. PubMed ID: 38924592 [TBL] [Abstract][Full Text] [Related]
27. Crenigacestat, a selective NOTCH1 inhibitor, reduces intrahepatic cholangiocarcinoma progression by blocking VEGFA/DLL4/MMP13 axis. Mancarella S; Serino G; Dituri F; Cigliano A; Ribback S; Wang J; Chen X; Calvisi DF; Giannelli G Cell Death Differ; 2020 Aug; 27(8):2330-2343. PubMed ID: 32042099 [TBL] [Abstract][Full Text] [Related]
28. Neurokinin-1 receptor antagonist aprepitant regulates autophagy and apoptosis via ROS/JNK in intrahepatic cholangiocarcinoma. Yang Y; Cao X; Wang Y; Wu X; Zhou P; Miao L; Deng X Liver Int; 2024 Jul; 44(7):1651-1667. PubMed ID: 38554043 [TBL] [Abstract][Full Text] [Related]
29. Anti-PD-1 in Combination With Trametinib Suppresses Tumor Growth and Improves Survival of Intrahepatic Cholangiocarcinoma in Mice. Wabitsch S; Tandon M; Ruf B; Zhang Q; McCallen JD; McVey JC; Ma C; Green BL; Diggs LP; Heinrich B; Greten TF Cell Mol Gastroenterol Hepatol; 2021; 12(3):1166-1178. PubMed ID: 34033968 [TBL] [Abstract][Full Text] [Related]
30. DKK1 drives immune suppressive phenotypes in intrahepatic cholangiocarcinoma and can be targeted with anti-DKK1 therapeutic DKN-01. Jarman EJ; Horcas-Lopez M; Waddell SH; MacMaster S; Gournopanos K; Soong DYH; Musialik KI; Tsokkou P; Ng ME; Cambridge WA; Wilson DH; Kagey MH; Newman W; Pollard JW; Boulter L Liver Int; 2023 Jan; 43(1):208-220. PubMed ID: 35924447 [TBL] [Abstract][Full Text] [Related]
32. YAP1 activation and Hippo pathway signaling in the pathogenesis and treatment of intrahepatic cholangiocarcinoma. Ko S; Kim M; Molina L; Sirica AE; Monga SP Adv Cancer Res; 2022; 156():283-317. PubMed ID: 35961703 [TBL] [Abstract][Full Text] [Related]
33. Septin 9 expression regulates 'don't eat me' signals and identifies an immune-epithelial class of intrahepatic cholangiocarcinoma. Cai TT; Desterke C; Peng J; Agnetti J; Song P; Ouazib D; Dos Santos A; Guettier C; Samuel D; Gassama-Diagne A Mol Oncol; 2024 Oct; 18(10):2369-2392. PubMed ID: 39082897 [TBL] [Abstract][Full Text] [Related]
34. Expression of fibroblast growth factor receptor 2 (FGFR2) in combined hepatocellular-cholangiocarcinoma and intrahepatic cholangiocarcinoma: clinicopathological study. Sasaki M; Sato Y; Nakanuma Y Virchows Arch; 2024 Jun; 484(6):915-923. PubMed ID: 38532197 [TBL] [Abstract][Full Text] [Related]
35. β-Catenin Sustains and Is Required for YES-associated Protein Oncogenic Activity in Cholangiocarcinoma. Zhang Y; Xu H; Cui G; Liang B; Chen X; Ko S; Affo S; Song X; Liao Y; Feng J; Wang P; Wang H; Xu M; Wang J; Pes GM; Ribback S; Zeng Y; Singhi A; Schwabe RF; Monga SP; Evert M; Tang L; Calvisi DF; Chen X Gastroenterology; 2022 Aug; 163(2):481-494. PubMed ID: 35489428 [TBL] [Abstract][Full Text] [Related]
36. MYC determines lineage commitment in KRAS-driven primary liver cancer development. D'Artista L; Moschopoulou AA; Barozzi I; Craig AJ; Seehawer M; Herrmann L; Minnich M; Kang TW; Rist E; Henning M; Klotz S; Heinzmann F; Harbig J; Sipos B; Longerich T; Eilers M; Dauch D; Zuber J; Wang XW; Zender L J Hepatol; 2023 Jul; 79(1):141-149. PubMed ID: 36906109 [TBL] [Abstract][Full Text] [Related]
37. Different iron-handling in inflamed small and large cholangiocytes and in small and large-duct type intrahepatic cholangiocarcinoma. Mancinelli R; Cutone A; Rosa L; Lepanto MS; Onori P; Pannarale L; Franchitto A; Gaudio E; Valenti P Eur J Histochem; 2020 Oct; 64(4):. PubMed ID: 33131269 [TBL] [Abstract][Full Text] [Related]
38. Brahma-Related Gene 1 Inhibition Prevents Liver Fibrosis and Cholangiocarcinoma by Attenuating Progenitor Expansion. Zhou Y; Chen Y; Zhang X; Xu Q; Wu Z; Cao X; Shao M; Shu Y; Lv T; Lu C; Xie M; Wen T; Yang J; Shi Y; Bu H Hepatology; 2021 Aug; 74(2):797-815. PubMed ID: 33650193 [TBL] [Abstract][Full Text] [Related]