These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 38526392)
1. Coexistence of giant Goos-Hänchen shift and high reflectance in Dirac semimetal based multilayered structure. Yin D; Liu W; Zhang M; Da H Phys Chem Chem Phys; 2024 Apr; 26(14):10974-10981. PubMed ID: 38526392 [TBL] [Abstract][Full Text] [Related]
2. Nonreciprocal Goos-Hänchen shift in a Dirac semimetal based asymmetric photonic crystal structure. Hu P; Zhou J; Song Q; Da H Appl Opt; 2024 Jan; 63(2):459-466. PubMed ID: 38227243 [TBL] [Abstract][Full Text] [Related]
3. Enhanced Goos-Hänchen shift in a defective Pell quasiperiodic photonic crystal with monolayer MoS Yang X; Liao Z; Chu Z; Zhu X; Da H Appl Opt; 2023 Aug; 62(22):5861-5866. PubMed ID: 37706934 [TBL] [Abstract][Full Text] [Related]
4. Mid-Infrared Sensor Based on Dirac Semimetal Coupling Structure. Zou Y; Liu Y; Song G Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336287 [TBL] [Abstract][Full Text] [Related]
5. Giant and controllable Goos-Hänchen shift of monolayer graphene strips enabled by a multilayer dielectric grating structure. Zhang C; Hong Y; Li Z; Da H Appl Opt; 2022 Jan; 61(3):844-850. PubMed ID: 35200793 [TBL] [Abstract][Full Text] [Related]
6. Giant and highly reflective Goos-Hänchen shift in a metal-dielectric multilayer Fano structure. Saito H; Neo Y; Matsumoto T; Tomita M Opt Express; 2019 Sep; 27(20):28629-28639. PubMed ID: 31684611 [TBL] [Abstract][Full Text] [Related]
7. Giant Goos-Hänchen shifts in non-Hermitian dielectric multilayers incorporated with graphene. Zhao D; Ke S; Liu Q; Wang B; Lu P Opt Express; 2018 Feb; 26(3):2817-2828. PubMed ID: 29401817 [TBL] [Abstract][Full Text] [Related]
8. Giant and tunable Goos-Hänchen shift with a high reflectance induced by PT-symmetry in atomic vapor. Han P; Li W; Zhou Y; Jiang S; Chang X; Huang A; Zhang H; Xiao Z Opt Express; 2021 Sep; 29(19):30436-30448. PubMed ID: 34614773 [TBL] [Abstract][Full Text] [Related]
9. Temperature controllable Goos-Hänchen shift and high reflectance of monolayer graphene induced by BK7 glass grating. Lu D; Shanshan M; Zhu X; Da H Nanotechnology; 2022 Sep; 33(48):. PubMed ID: 35994973 [TBL] [Abstract][Full Text] [Related]
10. Enhancing Goos-Hänchen shift based on magnetic dipole quasi-bound states in the continuum in all-dielectric metasurfaces. Zheng Z; Zhu Y; Duan J; Qin M; Wu F; Xiao S Opt Express; 2021 Aug; 29(18):29541-29549. PubMed ID: 34615062 [TBL] [Abstract][Full Text] [Related]
11. Terahertz Biosensor Based on Mode Coupling between Defect Mode and Optical Tamm State with Dirac Semimetal. Bao Y; Ren M; Ji C; Dong J; Jiang L; Dai X Biosensors (Basel); 2022 Nov; 12(11):. PubMed ID: 36421169 [TBL] [Abstract][Full Text] [Related]
12. Theoretical Enhancement of the Goos-Hänchen Shift with a Metasurface Based on Bound States in the Continuum. Jiang X; Fang B; Zhan C Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374694 [TBL] [Abstract][Full Text] [Related]
13. Strong enhancement of Goos-Hänchen shift through the resonant optical tunneling effect. Xiang L; Liu W; Wei Z; Meng H; Liu H; Guo J; Zhi Y; Huang Z; Li H; Wang F Opt Express; 2022 Dec; 30(26):47338-47349. PubMed ID: 36558664 [TBL] [Abstract][Full Text] [Related]
14. Giant Goos-Hänchen shift induced by bounded states in optical PT-symmetric bilayer structures. Cao Y; Fu Y; Zhou Q; Xu Y; Gao L; Chen H Opt Express; 2019 Mar; 27(6):7857-7867. PubMed ID: 31052613 [TBL] [Abstract][Full Text] [Related]
15. Goos-Hänchen shift in cryogenic defect photonic crystals composed of superconductor HgBa2Ca2Cu3O8+δ. Liu F; Hu H; Zhao D; Liu F; Zhao M PLoS One; 2024; 19(5):e0302142. PubMed ID: 38722957 [TBL] [Abstract][Full Text] [Related]
16. Adjustable enhanced Goos-Hänchen shift in a magneto-optic photonic crystal waveguide. Huang Y; Tang G; Chen J; Li ZY; Liang W Opt Express; 2022 Sep; 30(20):36478-36488. PubMed ID: 36258575 [TBL] [Abstract][Full Text] [Related]
17. Direct experimental observation of giant Goos-Hänchen shifts from bandgap-enhanced total internal reflection. Wan Y; Zheng Z; Kong W; Liu Y; Lu Z; Bian Y Opt Lett; 2011 Sep; 36(18):3539-41. PubMed ID: 21931383 [TBL] [Abstract][Full Text] [Related]
18. Nearly three orders of magnitude enhancement of Goos-Hanchen shift by exciting Bloch surface wave. Wan Y; Zheng Z; Kong W; Zhao X; Liu Y; Bian Y; Liu J Opt Express; 2012 Apr; 20(8):8998-9003. PubMed ID: 22513610 [TBL] [Abstract][Full Text] [Related]
19. Enhanced photonic spin Hall effect in Dirac semimetal metamaterial enabled by zero effective permittivity. Da H; Song Q; Hu P; Ye H Nanotechnology; 2022 Dec; 34(10):. PubMed ID: 36537746 [TBL] [Abstract][Full Text] [Related]
20. Giant Goos-Hänchen Shifts in Au-ITO-TMDCs-Graphene Heterostructure and Its Potential for High Performance Sensor. Han L; Pan J; Wu C; Li K; Ding H; Ji Q; Yang M; Wang J; Zhang H; Huang T Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32075012 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]