These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38526601)

  • 21. Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: Experimental and computational analysis.
    Barui S; Chatterjee S; Mandal S; Kumar A; Basu B
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):812-823. PubMed ID: 27770959
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MgF2-coated porous magnesium/alumina scaffolds with improved strength, corrosion resistance, and biological performance for biomedical applications.
    Kang MH; Jang TS; Kim SW; Park HS; Song J; Kim HE; Jung KH; Jung HD
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():634-42. PubMed ID: 26952467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration.
    Ma Y; Hu N; Liu J; Zhai X; Wu M; Hu C; Li L; Lai Y; Pan H; Lu WW; Zhang X; Luo Y; Ruan C
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9415-9424. PubMed ID: 30698946
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings.
    Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D Printing of a Porous Zn-1Mg-0.1Sr Alloy Scaffold: A Study on Mechanical Properties, Degradability, and Biosafety.
    Cao X; Wang X; Chen J; Geng X; Tian H
    J Funct Biomater; 2024 Apr; 15(4):. PubMed ID: 38667566
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect.
    Kim HW; Shin SY; Kim HE; Lee YM; Chung CP; Lee HH; Rhyu IC
    J Biomater Appl; 2008 May; 22(6):485-504. PubMed ID: 17494967
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of bimodal open-porous poly (butylene succinate)/cellulose nanocrystals composite scaffolds for tissue engineering application.
    Ju J; Gu Z; Liu X; Zhang S; Peng X; Kuang T
    Int J Biol Macromol; 2020 Mar; 147():1164-1173. PubMed ID: 31751685
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Production and characterization of highly porous biodegradable Mg alloy scaffolds containing Ca, Zn and Co.
    Mutlu I
    Biomed Mater Eng; 2018; 29(1):119-135. PubMed ID: 29254078
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Static Compressive Behavior and Failure Mechanism of Tantalum Scaffolds with Optimized Periodic Lattice Fabricated by Laser-Based Additive Manufacturing.
    Gao H; Yang J; Jin X; Zhang D; Zhang S; Zhang F; Chen H
    3D Print Addit Manuf; 2023 Oct; 10(5):887-904. PubMed ID: 37886405
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications.
    Peng WM; Liu YF; Jiang XF; Dong XT; Jun J; Baur DA; Xu JJ; Pan H; Xu X
    J Zhejiang Univ Sci B; 2019 Aug.; 20(8):647-659. PubMed ID: 31273962
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extrusion-based additive manufacturing of Mg-Zn/bioceramic composite scaffolds.
    Dong J; Lin P; Putra NE; Tümer N; Leeflang MA; Huan Z; Fratila-Apachitei LE; Chang J; Zadpoor AA; Zhou J
    Acta Biomater; 2022 Oct; 151():628-646. PubMed ID: 35940565
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanical properties and cytocompatibility of dense and porous Zn produced by laser powder bed fusion for biodegradable implant applications.
    Lietaert K; Zadpoor AA; Sonnaert M; Schrooten J; Weber L; Mortensen A; Vleugels J
    Acta Biomater; 2020 Jul; 110():289-302. PubMed ID: 32348917
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of porosity distribution on mechanical properties and osseointegration of porous polyetheretherketone.
    Wang D; Jiang C; Li J; Guo J; Zhang J; Ba F; Li Y; He G
    Biomater Adv; 2024 Sep; 166():214043. PubMed ID: 39276660
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering.
    Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K
    Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid vacuum sintering: A novel technique for fabricating fluorapatite ceramic scaffolds for bone tissue engineering.
    Denry I; Goudouri OM; Harless J; Holloway JA
    J Biomed Mater Res B Appl Biomater; 2018 Jan; 106(1):291-299. PubMed ID: 28135032
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical properties, corrosion and degradation behaviors, and in vitro cytocompatibility of a biodegradable Zn-5La alloy for bone-implant applications.
    Tong X; Han Y; Zhou R; Zeng J; Wang C; Yuan Y; Zhu L; Huang S; Ma J; Li Y; Wen C; Lin J
    Acta Biomater; 2023 Oct; 169():641-660. PubMed ID: 37541605
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro evaluation for apatite-forming ability of cellulose-based nanocomposite scaffolds for bone tissue engineering.
    Saber-Samandari S; Saber-Samandari S; Kiyazar S; Aghazadeh J; Sadeghi A
    Int J Biol Macromol; 2016 May; 86():434-42. PubMed ID: 26836617
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D interconnected porous PMMA scaffold integrating with advanced nanostructured CaP-based biomaterials for rapid bone repair and regeneration.
    Elakkiya K; Bargavi P; Balakumar S
    J Mech Behav Biomed Mater; 2023 Nov; 147():106106. PubMed ID: 37708780
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication and characterization of highly porous barium titanate based scaffold coated by Gel/HA nanocomposite with high piezoelectric coefficient for bone tissue engineering applications.
    Ehterami A; Kazemi M; Nazari B; Saraeian P; Azami M
    J Mech Behav Biomed Mater; 2018 Mar; 79():195-202. PubMed ID: 29306083
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Printing tissue-engineered scaffolds made of polycaprolactone and nano-hydroxyapatite with mechanical properties appropriate for trabecular bone substitutes.
    Yazdanpanah Z; Sharma NK; Raquin A; Cooper DML; Chen X; Johnston JD
    Biomed Eng Online; 2023 Jul; 22(1):73. PubMed ID: 37474951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.