BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38526727)

  • 1. Targeted Genome Editing of Virulent Pseudomonas Phages Using CRISPR-Cas3.
    Schroven K; Voet M; Lavigne R; Hendrix H
    Methods Mol Biol; 2024; 2793():113-128. PubMed ID: 38526727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9.
    Shen J; Zhou J; Chen GQ; Xiu ZL
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29899105
    [No Abstract]   [Full Text] [Related]  

  • 3. A SEVA-based, CRISPR-Cas3-assisted genome engineering approach for
    Lammens E-M; Volke DC; Schroven K; Voet M; Kerremans A; Lavigne R; Hendrix H
    Microbiol Spectr; 2023 Dec; 11(6):e0270723. PubMed ID: 37975669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precise genome engineering in Pseudomonas using phage-encoded homologous recombination and the Cascade-Cas3 system.
    Zheng W; Xia Y; Wang X; Gao S; Zhou D; Ravichandran V; Jiang C; Tu Q; Yin Y; Zhang Y; Fu J; Li R; Yin J
    Nat Protoc; 2023 Sep; 18(9):2642-2670. PubMed ID: 37626246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacteriophage genome engineering with CRISPR-Cas13a.
    Guan J; Oromí-Bosch A; Mendoza SD; Karambelkar S; Berry JD; Bondy-Denomy J
    Nat Microbiol; 2022 Dec; 7(12):1956-1966. PubMed ID: 36316452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A functional type II-A CRISPR-Cas system from Listeria enables efficient genome editing of large non-integrating bacteriophage.
    Hupfeld M; Trasanidou D; Ramazzini L; Klumpp J; Loessner MJ; Kilcher S
    Nucleic Acids Res; 2018 Jul; 46(13):6920-6933. PubMed ID: 30053228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A compact Cascade-Cas3 system for targeted genome engineering.
    Csörgő B; León LM; Chau-Ly IJ; Vasquez-Rifo A; Berry JD; Mahendra C; Crawford ED; Lewis JD; Bondy-Denomy J
    Nat Methods; 2020 Dec; 17(12):1183-1190. PubMed ID: 33077967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A bacteriophage nucleus-like compartment shields DNA from CRISPR nucleases.
    Mendoza SD; Nieweglowska ES; Govindarajan S; Leon LM; Berry JD; Tiwari A; Chaikeeratisak V; Pogliano J; Agard DA; Bondy-Denomy J
    Nature; 2020 Jan; 577(7789):244-248. PubMed ID: 31819262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-Cas9 Based Bacteriophage Genome Editing.
    Zhang X; Zhang C; Liang C; Li B; Meng F; Ai Y
    Microbiol Spectr; 2022 Aug; 10(4):e0082022. PubMed ID: 35880867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacteriophage T4 Escapes CRISPR Attack by Minihomology Recombination and Repair.
    Wu X; Zhu J; Tao P; Rao VB
    mBio; 2021 Jun; 12(3):e0136121. PubMed ID: 34154416
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Selle K; Fletcher JR; Tuson H; Schmitt DS; McMillan L; Vridhambal GS; Rivera AJ; Montgomery SA; Fortier LC; Barrangou R; Theriot CM; Ousterout DG
    mBio; 2020 Mar; 11(2):. PubMed ID: 32156803
    [No Abstract]   [Full Text] [Related]  

  • 12. Genome Engineering of Virulent Lactococcal Phages Using CRISPR-Cas9.
    Lemay ML; Tremblay DM; Moineau S
    ACS Synth Biol; 2017 Jul; 6(7):1351-1358. PubMed ID: 28324650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies for Editing Virulent Staphylococcal Phages Using CRISPR-Cas10.
    Bari SMN; Walker FC; Cater K; Aslan B; Hatoum-Aslan A
    ACS Synth Biol; 2017 Dec; 6(12):2316-2325. PubMed ID: 28885820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clustered Regularly Interspaced Short Palindromic Repeat-Dependent, Biofilm-Specific Death of Pseudomonas aeruginosa Mediated by Increased Expression of Phage-Related Genes.
    Heussler GE; Cady KC; Koeppen K; Bhuju S; Stanton BA; O'Toole GA
    mBio; 2015 May; 6(3):e00129-15. PubMed ID: 25968642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-Cas: an efficient tool for genome engineering of virulent bacteriophages.
    Martel B; Moineau S
    Nucleic Acids Res; 2014 Aug; 42(14):9504-13. PubMed ID: 25063295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of Cas9 Targeting and Red Recombination for Designer Phage Engineering.
    Choi SY; Romero-Calle DX; Cho HG; Bae HW; Cho YH
    J Microbiol; 2024 Jan; 62(1):1-10. PubMed ID: 38300409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa.
    Pawluk A; Bondy-Denomy J; Cheung VH; Maxwell KL; Davidson AR
    mBio; 2014 Apr; 5(2):e00896. PubMed ID: 24736222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional Analysis of Bacteriophage Immunity through a Type I-E CRISPR-Cas System in Vibrio cholerae and Its Application in Bacteriophage Genome Engineering.
    Box AM; McGuffie MJ; O'Hara BJ; Seed KD
    J Bacteriol; 2016 Feb; 198(3):578-90. PubMed ID: 26598368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Cas10 assisted editing of virulent staphylococcal phages.
    Nayeemul Bari SM; Hatoum-Aslan A
    Methods Enzymol; 2019; 616():385-409. PubMed ID: 30691652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic Engineering of Therapeutic Phages Using Type III CRISPR-Cas Systems.
    Hill CM; Hatoum-Aslan A
    Methods Mol Biol; 2024; 2734():279-299. PubMed ID: 38066376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.