These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 38526912)
1. The Chemistry of Spinel Ferrite Nanoparticle Nucleation, Crystallization, and Growth. Andersen HL; Granados-Miralles C; Jensen KMØ; Saura-Múzquiz M; Christensen M ACS Nano; 2024 Apr; 18(14):9852-9870. PubMed ID: 38526912 [TBL] [Abstract][Full Text] [Related]
2. Crystalline and magnetic structure-property relationship in spinel ferrite nanoparticles. Andersen HL; Saura-Múzquiz M; Granados-Miralles C; Canévet E; Lock N; Christensen M Nanoscale; 2018 Aug; 10(31):14902-14914. PubMed ID: 30044457 [TBL] [Abstract][Full Text] [Related]
3. In situ powder X-ray diffraction study of magnetic CoFe2O4 nanocrystallite synthesis. Andersen HL; Christensen M Nanoscale; 2015 Feb; 7(8):3481-90. PubMed ID: 25626732 [TBL] [Abstract][Full Text] [Related]
4. Local and long-range atomic/magnetic structure of non-stoichiometric spinel iron oxide nanocrystallites. Andersen HL; Frandsen BA; Gunnlaugsson HP; Jørgensen MRV; Billinge SJL; Jensen KMØ; Christensen M IUCrJ; 2021 Jan; 8(Pt 1):33-45. PubMed ID: 33520241 [TBL] [Abstract][Full Text] [Related]
5. Mechanisms for iron oxide formation under hydrothermal conditions: an in situ total scattering study. Jensen KM; Andersen HL; Tyrsted C; Bøjesen ED; Dippel AC; Lock N; Billinge SJ; Iversen BB; Christensen M ACS Nano; 2014 Oct; 8(10):10704-14. PubMed ID: 25256366 [TBL] [Abstract][Full Text] [Related]
6. In-depth investigations of size and occupancies in cobalt ferrite nanoparticles by joint Rietveld refinements of X-ray and neutron powder diffraction data. Henry K; Ahlburg JV; Andersen HL; Granados-Miralles C; Stingaciu M; Saura-Múzquiz M; Christensen M J Appl Crystallogr; 2022 Oct; 55(Pt 5):1336-1350. PubMed ID: 36249502 [TBL] [Abstract][Full Text] [Related]
7. Revealing the mechanisms behind SnO2 nanoparticle formation and growth during hydrothermal synthesis: an in situ total scattering study. Jensen KM; Christensen M; Juhas P; Tyrsted C; Bøjesen ED; Lock N; Billinge SJ; Iversen BB J Am Chem Soc; 2012 Apr; 134(15):6785-92. PubMed ID: 22420861 [TBL] [Abstract][Full Text] [Related]
8. Pulsed supercritical synthesis of anatase TiO₂ nanoparticles in a water-isopropanol mixture studied by in situ powder X-ray diffraction. Rostgaard Eltzholtz J; Tyrsted C; Ørnsbjerg Jensen KM; Bremholm M; Christensen M; Becker-Christensen J; Brummerstedt Iversen B Nanoscale; 2013 Mar; 5(6):2372-8. PubMed ID: 23396539 [TBL] [Abstract][Full Text] [Related]
9. A controllable one-pot hydrothermal synthesis of spherical cobalt ferrite nanoparticles: synthesis, characterization, and optical properties. Refat NM; Nassar MY; Sadeek SA RSC Adv; 2022 Aug; 12(38):25081-25095. PubMed ID: 36199874 [TBL] [Abstract][Full Text] [Related]
10. Recent developments in the synthesis and stability of metal ferrite nanoparticles. Imran Din M; Rafique F; Hussain MS; Arslan Mehmood H; Waseem S Sci Prog; 2019 Mar; 102(1):61-72. PubMed ID: 31829786 [TBL] [Abstract][Full Text] [Related]
11. Monitoring the Hydrothermal Growth of Cobalt Spinel Water Oxidation Catalysts: From Preparative History to Catalytic Activity. Reith L; Lienau K; Cook DS; Moré R; Walton RI; Patzke GR Chemistry; 2018 Dec; 24(69):18424-18435. PubMed ID: 29790222 [TBL] [Abstract][Full Text] [Related]
12. Specific Absorption Rate Dependency on the Co Narayanaswamy V; Al-Omari IA; Kamzin AS; Issa B; Tekin HO; Khourshid H; Kumar H; Mallya A; Sambasivam S; Obaidat IM Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34066997 [TBL] [Abstract][Full Text] [Related]
13. Thermal stability, electrochemical and structural characterization of hydrothermally synthesised cobalt ferrite (CoFe Bastianello M; Gross S; Elm MT RSC Adv; 2019 Oct; 9(57):33282-33289. PubMed ID: 35529128 [TBL] [Abstract][Full Text] [Related]
14. Tuning the Interfacial Properties of Spinels to Improve the Antimony Adsorption Ability. Ai Y; Wu C; Liu G; Wang H; Yao C; Li H; Li Z Langmuir; 2021 Aug; 37(33):9973-9981. PubMed ID: 34388343 [TBL] [Abstract][Full Text] [Related]
15. On the synthesis of bi-magnetic manganese ferrite-based core-shell nanoparticles. Sanna Angotzi M; Mameli V; Cara C; Peddis D; Xin HL; Sangregorio C; Mercuri ML; Cannas C Nanoscale Adv; 2021 Mar; 3(6):1612-1623. PubMed ID: 36132565 [TBL] [Abstract][Full Text] [Related]
16. The formation mechanism of bimetallic PtRu alloy nanoparticles in solvothermal synthesis. Mi JL; Nørby P; Bremholm M; Becker J; Iversen BB Nanoscale; 2015 Oct; 7(39):16170-4. PubMed ID: 26382321 [TBL] [Abstract][Full Text] [Related]
17. Atomic structural changes in the formation of transition metal tungstates: the role of polyoxometalate structures in material crystallization. Skjærvø SL; Anker AS; Wied MC; Kjær ETS; Juelsholt M; Christiansen TL; Ø Jensen KM Chem Sci; 2023 May; 14(18):4806-4816. PubMed ID: 37181762 [TBL] [Abstract][Full Text] [Related]
18. Comparative Heating Efficiency of Cobalt-, Manganese-, and Nickel-Ferrite Nanoparticles for a Hyperthermia Agent in Biomedicines. Demirci Dönmez ÇE; Manna PK; Nickel R; Aktürk S; van Lierop J ACS Appl Mater Interfaces; 2019 Feb; 11(7):6858-6866. PubMed ID: 30676734 [TBL] [Abstract][Full Text] [Related]
19. Preparation of Mn, Ni, Co ferrite highly porous silica nanocomposite aerogels by an urea-assisted sol-gel procedure. Loche D; Casula MF; Falqui A; Marras S; Corrias A J Nanosci Nanotechnol; 2010 Feb; 10(2):1008-16. PubMed ID: 20352749 [TBL] [Abstract][Full Text] [Related]