BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38526943)

  • 1. Effects of finger pinch motor imagery on short-latency afferent inhibition and corticospinal excitability.
    Nakashoji K; Sasaki A; Kaneko N; Nomura T; Milosevic M
    Neuroreport; 2024 Apr; 35(6):413-420. PubMed ID: 38526943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The recent history of afferent stimulation modulates corticospinal excitability.
    Bonnesen MT; Fuglsang SA; Siebner HR; Christiansen L
    Neuroimage; 2022 Sep; 258():119365. PubMed ID: 35690256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic modulation of corticospinal excitability and short-latency afferent inhibition during onset and maintenance phase of selective finger movement.
    Cho HJ; Panyakaew P; Thirugnanasambandam N; Wu T; Hallett M
    Clin Neurophysiol; 2016 Jun; 127(6):2343-9. PubMed ID: 27178851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined effect of motor imagery and peripheral nerve electrical stimulation on the motor cortex.
    Saito K; Yamaguchi T; Yoshida N; Tanabe S; Kondo K; Sugawara K
    Exp Brain Res; 2013 Jun; 227(3):333-42. PubMed ID: 23591692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of touching an object on corticospinal excitability during motor imagery.
    Mizuguchi N; Sakamoto M; Muraoka T; Kanosue K
    Exp Brain Res; 2009 Jul; 196(4):529-35. PubMed ID: 19504259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corticospinal excitability during observation and imagery of simple and complex hand tasks: implications for motor rehabilitation.
    Roosink M; Zijdewind I
    Behav Brain Res; 2010 Nov; 213(1):35-41. PubMed ID: 20433871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor imagery and electrical stimulation reproduce corticospinal excitability at levels similar to voluntary muscle contraction.
    Kaneko F; Hayami T; Aoyama T; Kizuka T
    J Neuroeng Rehabil; 2014 Jun; 11():94. PubMed ID: 24902891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle-specific movement-phase-dependent modulation of corticospinal excitability during upper-limb motor execution and motor imagery combined with virtual action observation.
    Suzuki Y; Kaneko N; Sasaki A; Tanaka F; Nakazawa K; Nomura T; Milosevic M
    Neurosci Lett; 2021 Jun; 755():135907. PubMed ID: 33887382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor imagery of voluntary muscle relaxation induces temporal reduction of corticospinal excitability.
    Kato K; Watanabe J; Muraoka T; Kanosue K
    Neurosci Res; 2015 Mar; 92():39-45. PubMed ID: 25448688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time course of changes in corticospinal excitability induced by motor imagery during action observation combined with peripheral nerve electrical stimulation.
    Yasui T; Yamaguchi T; Tanabe S; Tatemoto T; Takahashi Y; Kondo K; Kawakami M
    Exp Brain Res; 2019 Mar; 237(3):637-645. PubMed ID: 30536148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor imagery of foot dorsiflexion and gait: effects on corticospinal excitability.
    Bakker M; Overeem S; Snijders AH; Borm G; van Elswijk G; Toni I; Bloem BR
    Clin Neurophysiol; 2008 Nov; 119(11):2519-27. PubMed ID: 18838294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motor imagery of voluntary muscle relaxation of the foot induces a temporal reduction of corticospinal excitability in the hand.
    Kato K; Kanosue K
    Neurosci Lett; 2018 Mar; 668():67-72. PubMed ID: 29305917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between imagined movement and the initiation of voluntary movement: a TMS study.
    Li S; Stevens JA; Rymer WZ
    Clin Neurophysiol; 2009 Jun; 120(6):1154-60. PubMed ID: 19250861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of somatosensory input on corticospinal excitability during motor imagery.
    Mizuguchi N; Sakamoto M; Muraoka T; Moriyama N; Nakagawa K; Nakata H; Kanosue K
    Neurosci Lett; 2012 Apr; 514(1):127-30. PubMed ID: 22402190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time changes in corticospinal excitability related to motor imagery of a force control task.
    Tatemoto T; Tsuchiya J; Numata A; Osawa R; Yamaguchi T; Tanabe S; Kondo K; Otaka Y; Sugawara K
    Behav Brain Res; 2017 Sep; 335():185-190. PubMed ID: 28827129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of repetitive peripheral magnetic stimulation combined with motor imagery on the corticospinal excitability of antagonist muscles.
    Asao A; Hoshino Y; Nomura T; Shibuya K
    Neuroreport; 2021 Jul; 32(10):894-898. PubMed ID: 34029290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tactile versus motor imagery: differences in corticospinal excitability assessed with single-pulse TMS.
    Morozova M; Nasibullina A; Yakovlev L; Syrov N; Kaplan A; Lebedev M
    Sci Rep; 2024 Jun; 14(1):14862. PubMed ID: 38937562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imagined paralysis reduces motor cortex excitability.
    Hartmann M; Falconer CJ; Kaelin-Lang A; Müri RM; Mast FW
    Psychophysiology; 2022 Oct; 59(10):e14069. PubMed ID: 35393640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corticospinal excitability during imagined and observed dynamic force production tasks: effortfulness matters.
    Helm F; Marinovic W; Krüger B; Munzert J; Riek S
    Neuroscience; 2015 Apr; 290():398-405. PubMed ID: 25639231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition or facilitation? Modulation of corticospinal excitability during motor imagery.
    Bruno V; Fossataro C; Garbarini F
    Neuropsychologia; 2018 Mar; 111():360-368. PubMed ID: 29462639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.