These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38526982)

  • 21. Distribution of first-passage times to specific targets on compactly explored fractal structures.
    Meroz Y; Sokolov IM; Klafter J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 1):020104. PubMed ID: 21405802
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Global first-passage times of fractal lattices.
    Haynes CP; Roberts AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041111. PubMed ID: 18999383
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatial log-periodic oscillations of first-passage observables in fractals.
    Akkermans E; Benichou O; Dunne GV; Teplyaev A; Voituriez R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061125. PubMed ID: 23367911
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-avoiding walk on fractal complex networks: Exactly solvable cases.
    Hotta Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052821. PubMed ID: 25493847
    [TBL] [Abstract][Full Text] [Related]  

  • 25. General mapping between random walks and thermal vibrations in elastic networks: fractal networks as a case study.
    Reuveni S; Granek R; Klafter J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041132. PubMed ID: 21230263
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multifractality of complex networks.
    Furuya S; Yakubo K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036118. PubMed ID: 22060467
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new method to measure complexity in binary or weighted networks and applications to functional connectivity in the human brain.
    Hahn K; Massopust PR; Prigarin S
    BMC Bioinformatics; 2016 Feb; 17():87. PubMed ID: 26873589
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modified box dimension and average weighted receiving time on the weighted fractal networks.
    Dai M; Sun Y; Shao S; Xi L; Su W
    Sci Rep; 2015 Dec; 5():18210. PubMed ID: 26666355
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimal fractal-like hierarchical honeycombs.
    Oftadeh R; Haghpanah B; Vella D; Boudaoud A; Vaziri A
    Phys Rev Lett; 2014 Sep; 113(10):104301. PubMed ID: 25238362
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scaling theory of fractal complex networks.
    Fronczak A; Fronczak P; Samsel MJ; Makulski K; Łepek M; Mrowinski MJ
    Sci Rep; 2024 Apr; 14(1):9079. PubMed ID: 38643243
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New concepts in the study of tissue vascularization: a mathematical model of skin vascularization.
    Vico PG; Boyer H; Cartilier LH
    Plast Reconstr Surg; 1994 Jul; 94(1):174-9. PubMed ID: 8016231
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stochastic growth tree networks with an identical fractal dimension: Construction and mean hitting time for random walks.
    Ma F; Luo X; Wang P
    Chaos; 2022 Jun; 32(6):063123. PubMed ID: 35778122
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multifractal analysis of weighted networks by a modified sandbox algorithm.
    Song YQ; Liu JL; Yu ZG; Li BG
    Sci Rep; 2015 Dec; 5():17628. PubMed ID: 26634304
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fractal network dimension and viscoelastic powerlaw behavior: II. An experimental study of structure-mimicking phantoms by magnetic resonance elastography.
    Guo J; Posnansky O; Hirsch S; Scheel M; Taupitz M; Braun J; Sack I
    Phys Med Biol; 2012 Jun; 57(12):4041-53. PubMed ID: 22674199
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fractal Time Series: Background, Estimation Methods, and Performances.
    Porcaro C; Moaveninejad S; D'Onofrio V; DiIeva A
    Adv Neurobiol; 2024; 36():95-137. PubMed ID: 38468029
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Betweenness centrality of fractal and nonfractal scale-free model networks and tests on real networks.
    Kitsak M; Havlin S; Paul G; Riccaboni M; Pammolli F; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056115. PubMed ID: 17677141
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lévy Walk Navigation in Complex Networks: A Distinct Relation between Optimal Transport Exponent and Network Dimension.
    Weng T; Small M; Zhang J; Hui P
    Sci Rep; 2015 Nov; 5():17309. PubMed ID: 26601780
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Machine learning-based structure-property predictions in silica aerogels.
    Abdusalamov R; Pandit P; Milow B; Itskov M; Rege A
    Soft Matter; 2021 Aug; 17(31):7350-7358. PubMed ID: 34296238
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Overlapping-box-covering method for the fractal dimension of complex networks.
    Sun Y; Zhao Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042809. PubMed ID: 24827295
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient rewirings for enhancing synchronizability of dynamical networks.
    Rad AA; Jalili M; Hasler M
    Chaos; 2008 Sep; 18(3):037104. PubMed ID: 19045478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.