These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 38527040)

  • 1. Indirect co-culture of osteoblasts and endothelial cells in vitro based on a biomimetic 3D composite hydrogel scaffold to promote the proliferation and differentiation of osteoblasts.
    Li C; Chen G; Wang Y; Xu W; Hu M
    PLoS One; 2024; 19(3):e0298689. PubMed ID: 38527040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel 3D indirect co-culture system based on a collagen hydrogel scaffold for enhancing the osteogenesis of stem cells.
    Kim H; Han SH; Kook YM; Lee KM; Jin YZ; Koh WG; Lee JH; Lee K
    J Mater Chem B; 2020 Oct; 8(41):9481-9491. PubMed ID: 32996551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proliferation of ASC-derived endothelial cells in a 3D electrospun mesh: impact of bone-biomimetic nanocomposite and co-culture with ASC-derived osteoblasts.
    Gao S; Calcagni M; Welti M; Hemmi S; Hild N; Stark WJ; Bürgisser GM; Wanner GA; Cinelli P; Buschmann J
    Injury; 2014 Jun; 45(6):974-80. PubMed ID: 24650943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of a three-dimensional printed gelatin/sodium alginate/nano-attapulgite composite polymer scaffold loaded with leonurine hydrochloride and its effects on osteogenesis and vascularization.
    Tan Y; Fan S; Wu X; Liu M; Dai T; Liu C; Ni S; Wang J; Yuan X; Zhao H; Weng Y
    Int J Biol Macromol; 2023 Sep; 249():126028. PubMed ID: 37506787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel method to improve the osteogenesis capacity of hUCMSCs with dual-directional pre-induction under screened co-culture conditions.
    Rong Q; Li S; Zhou Y; Geng Y; Liu S; Wu W; Forouzanfar T; Wu G; Zhang Z; Zhou M
    Cell Prolif; 2020 Feb; 53(2):e12740. PubMed ID: 31820506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Adhesive Hydrogel Biomimetic Periosteum to Promote Critical-Size Bone Defect Repair via Synergistic Osteogenesis and Angiogenesis.
    Yang Z; Yang Z; Ding L; Zhang P; Liu C; Chen D; Zhao F; Wang G; Chen X
    ACS Appl Mater Interfaces; 2022 Aug; 14(32):36395-36410. PubMed ID: 35925784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flowerbed-Inspired Biomimetic Scaffold with Rapid Internal Tissue Infiltration and Vascularization Capacity for Bone Repair.
    Zhou X; Qian Y; Chen L; Li T; Sun X; Ma X; Wang J; He C
    ACS Nano; 2023 Mar; 17(5):5140-5156. PubMed ID: 36808939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collagen hydrogel scaffold promotes mesenchymal stem cell and endothelial cell coculture for bone tissue engineering.
    Nguyen BB; Moriarty RA; Kamalitdinov T; Etheridge JM; Fisher JP
    J Biomed Mater Res A; 2017 Apr; 105(4):1123-1131. PubMed ID: 28093887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prevascularization of 3D printed bone scaffolds by bioactive hydrogels and cell co-culture.
    Kuss MA; Wu S; Wang Y; Untrauer JB; Li W; Lim JY; Duan B
    J Biomed Mater Res B Appl Biomater; 2018 Jul; 106(5):1788-1798. PubMed ID: 28901689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new composite hydrogel combining the biological properties of collagen with the mechanical properties of a supramolecular scaffold for bone tissue engineering.
    Maisani M; Ziane S; Ehret C; Levesque L; Siadous R; Le Meins JF; Chevallier P; Barthélémy P; De Oliveira H; Amédée J; Mantovani D; Chassande O
    J Tissue Eng Regen Med; 2018 Mar; 12(3):e1489-e1500. PubMed ID: 28875562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-compartment scaffold fabricated via 3D-printing as in vitro co-culture osteogenic model.
    De Giglio E; Bonifacio MA; Ferreira AM; Cometa S; Ti ZY; Stanzione A; Dalgarno K; Gentile P
    Sci Rep; 2018 Oct; 8(1):15130. PubMed ID: 30310164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiated adipose-derived stem cell cocultures for bone regeneration in polymer scaffolds in vivo.
    Shah AR; Cornejo A; Guda T; Sahar DE; Stephenson SM; Chang S; Krishnegowda NK; Sharma R; Wang HT
    J Craniofac Surg; 2014 Jul; 25(4):1504-9. PubMed ID: 24943502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic Hydrogels Loaded with Nanofibers Mediate Sustained Release of pDNA and Promote In Situ Bone Regeneration.
    Huang L; Zhang Z; Guo M; Pan C; Huang Z; Jin J; Li Y; Hou X; Li W
    Macromol Biosci; 2021 Apr; 21(4):e2000393. PubMed ID: 33625790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Versatile design of hydrogel-based scaffolds with manipulated pore structure for hard-tissue regeneration.
    Kim W; Lee H; Kim Y; Choi CH; Lee D; Hwang H; Kim G
    Biomed Mater; 2016 Sep; 11(5):055002. PubMed ID: 27586518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Study on bone marrow mesenchymal stem cells derived osteoblasts and endothelial cells compound with chitosan/hydroxyapatite scaffold to construct vascularized tissue engineered bone].
    Hao Z; Feng W; Hao T; Yu B
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Apr; 26(4):489-94. PubMed ID: 22568335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro and in vivo effects of rat kidney vascular endothelial cells on osteogenesis of rat bone marrow mesenchymal stem cells growing on polylactide-glycoli acid (PLGA) scaffolds.
    Sun H; Qu Z; Guo Y; Zang G; Yang B
    Biomed Eng Online; 2007 Nov; 6():41. PubMed ID: 17980048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Bioprinting of a Bioactive Composite Scaffold for Cell Delivery in Periodontal Tissue Regeneration.
    Miao G; Liang L; Li W; Ma C; Pan Y; Zhao H; Zhang Q; Xiao Y; Yang X
    Biomolecules; 2023 Jun; 13(7):. PubMed ID: 37509098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel 3D scaffold with enhanced physical and cell response properties for bone tissue regeneration, fabricated by patterned electrospinning/electrospraying.
    Hejazi F; Mirzadeh H
    J Mater Sci Mater Med; 2016 Sep; 27(9):143. PubMed ID: 27550014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering.
    Chen Y; Kawazoe N; Chen G
    Acta Biomater; 2018 Feb; 67():341-353. PubMed ID: 29242161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crosstalk between osteoblasts and endothelial cells co-cultured on a polycaprolactone-starch scaffold and the in vitro development of vascularization.
    Santos MI; Unger RE; Sousa RA; Reis RL; Kirkpatrick CJ
    Biomaterials; 2009 Sep; 30(26):4407-15. PubMed ID: 19487022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.