These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 38527187)

  • 21. Structure of a glycomimetic ligand in the carbohydrate recognition domain of C-type lectin DC-SIGN. Structural requirements for selectivity and ligand design.
    Thépaut M; Guzzi C; Sutkeviciute I; Sattin S; Ribeiro-Viana R; Varga N; Chabrol E; Rojo J; Bernardi A; Angulo J; Nieto PM; Fieschi F
    J Am Chem Soc; 2013 Feb; 135(7):2518-29. PubMed ID: 23360500
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intradomain Allosteric Network Modulates Calcium Affinity of the C-Type Lectin Receptor Langerin.
    Hanske J; Aleksić S; Ballaschk M; Jurk M; Shanina E; Beerbaum M; Schmieder P; Keller BG; Rademacher C
    J Am Chem Soc; 2016 Sep; 138(37):12176-86. PubMed ID: 27560542
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bispecific chimeric antigen receptors targeting the CD4 binding site and high-mannose Glycans of gp120 optimized for anti-human immunodeficiency virus potency and breadth with minimal immunogenicity.
    Ghanem MH; Bolivar-Wagers S; Dey B; Hajduczki A; Vargas-Inchaustegui DA; Danielson DT; Bundoc V; Liu L; Berger EA
    Cytotherapy; 2018 Mar; 20(3):407-419. PubMed ID: 29306566
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Human immunodeficiency virus envelope (gp120) binding to DC-SIGN and primary dendritic cells is carbohydrate dependent but does not involve 2G12 or cyanovirin binding sites: implications for structural analyses of gp120-DC-SIGN binding.
    Hong PW; Flummerfelt KB; de Parseval A; Gurney K; Elder JH; Lee B
    J Virol; 2002 Dec; 76(24):12855-65. PubMed ID: 12438611
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural Insights into the pH-Dependent Conformational Change and Collagen Recognition of the Human Mannose Receptor.
    Hu Z; Shi X; Yu B; Li N; Huang Y; He Y
    Structure; 2018 Jan; 26(1):60-71.e3. PubMed ID: 29225077
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Receptor usage dictates HIV-1 restriction by human TRIM5α in dendritic cell subsets.
    Ribeiro CM; Sarrami-Forooshani R; Setiawan LC; Zijlstra-Willems EM; van Hamme JL; Tigchelaar W; van der Wel NN; Kootstra NA; Gringhuis SI; Geijtenbeek TB
    Nature; 2016 Dec; 540(7633):448-452. PubMed ID: 27919079
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel mechanism of carbohydrate recognition by the C-type lectins DC-SIGN and DC-SIGNR. Subunit organization and binding to multivalent ligands.
    Mitchell DA; Fadden AJ; Drickamer K
    J Biol Chem; 2001 Aug; 276(31):28939-45. PubMed ID: 11384997
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solution NMR analyses of the C-type carbohydrate recognition domain of DC-SIGNR protein reveal different binding modes for HIV-derived oligosaccharides and smaller glycan fragments.
    Probert F; Whittaker SB; Crispin M; Mitchell DA; Dixon AM
    J Biol Chem; 2013 Aug; 288(31):22745-57. PubMed ID: 23788638
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Docking, synthesis, and NMR studies of mannosyl trisaccharide ligands for DC-SIGN lectin.
    Reina JJ; Díaz I; Nieto PM; Campillo NE; Páez JA; Tabarani G; Fieschi F; Rojo J
    Org Biomol Chem; 2008 Aug; 6(15):2743-54. PubMed ID: 18633532
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The structure of DC-SIGNR with a portion of its repeat domain lends insights to modeling of the receptor tetramer.
    Snyder GA; Colonna M; Sun PD
    J Mol Biol; 2005 Apr; 347(5):979-89. PubMed ID: 15784257
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Second generation of fucose-based DC-SIGN ligands: affinity improvement and specificity versus Langerin.
    Andreini M; Doknic D; Sutkeviciute I; Reina JJ; Duan J; Chabrol E; Thepaut M; Moroni E; Doro F; Belvisi L; Weiser J; Rojo J; Fieschi F; Bernardi A
    Org Biomol Chem; 2011 Aug; 9(16):5778-86. PubMed ID: 21735039
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oligomerization of the macrophage mannose receptor enhances gp120-mediated binding of HIV-1.
    Lai J; Bernhard OK; Turville SG; Harman AN; Wilkinson J; Cunningham AL
    J Biol Chem; 2009 Apr; 284(17):11027-38. PubMed ID: 19224860
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extended and bent conformations of the mannose receptor family.
    Llorca O
    Cell Mol Life Sci; 2008 May; 65(9):1302-10. PubMed ID: 18193159
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proteomic analysis of DC-SIGN on dendritic cells detects tetramers required for ligand binding but no association with CD4.
    Bernhard OK; Lai J; Wilkinson J; Sheil MM; Cunningham AL
    J Biol Chem; 2004 Dec; 279(50):51828-35. PubMed ID: 15385553
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polymorphisms in human langerin affect stability and sugar binding activity.
    Ward EM; Stambach NS; Drickamer K; Taylor ME
    J Biol Chem; 2006 Jun; 281(22):15450-6. PubMed ID: 16567809
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Widely divergent biochemical properties of the complete set of mouse DC-SIGN-related proteins.
    Powlesland AS; Ward EM; Sadhu SK; Guo Y; Taylor ME; Drickamer K
    J Biol Chem; 2006 Jul; 281(29):20440-9. PubMed ID: 16682406
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DC-SIGN binds to HIV-1 glycoprotein 120 in a distinct but overlapping fashion compared with ICAM-2 and ICAM-3.
    Su SV; Hong P; Baik S; Negrete OA; Gurney KB; Lee B
    J Biol Chem; 2004 Apr; 279(18):19122-32. PubMed ID: 14970226
    [TBL] [Abstract][Full Text] [Related]  

  • 38. STD NMR and molecular modelling insights into interaction of novel mannose-based ligands with DC-SIGN.
    Kotar A; Tomašič T; Lenarčič Živković M; Jug G; Plavec J; Anderluh M
    Org Biomol Chem; 2016 Jan; 14(3):862-75. PubMed ID: 26580315
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression of mannose receptor and ligands for its cysteine-rich domain in venous sinuses of human spleen.
    Martinez-Pomares L; Hanitsch LG; Stillion R; Keshav S; Gordon S
    Lab Invest; 2005 Oct; 85(10):1238-49. PubMed ID: 16056240
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dual specificity of Langerin to sulfated and mannosylated glycans via a single C-type carbohydrate recognition domain.
    Tateno H; Ohnishi K; Yabe R; Hayatsu N; Sato T; Takeya M; Narimatsu H; Hirabayashi J
    J Biol Chem; 2010 Feb; 285(9):6390-400. PubMed ID: 20026605
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.