These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38527551)

  • 1. Global relevance of Argentinean rainfed crops in a climatic variability context: A water footprint assessment in Buenos Aires province.
    Rodríguez CI; Arrien MM; Silva SH; Aldaya MM
    Sci Total Environ; 2024 Jun; 927():171946. PubMed ID: 38527551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and inter-regional virtual water trade: A study for China (1978-2008).
    Zhuo L; Mekonnen MM; Hoekstra AY
    Water Res; 2016 May; 94():73-85. PubMed ID: 26938494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Greenhouse gas emissions and energy efficiencies for soybeans and maize cultivated in different agronomic zones: A case study of Argentina.
    Arrieta EM; Cuchietti A; Cabrol D; González AD
    Sci Total Environ; 2018 Jun; 625():199-208. PubMed ID: 29289768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water Footprint of crop productions: A review.
    Lovarelli D; Bacenetti J; Fiala M
    Sci Total Environ; 2016 Apr; 548-549():236-251. PubMed ID: 26802352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive analysis of water resources from the perspective of water footprint and water ecological footprint: a case study from Anyang City, China.
    Ma X; Jiao S
    Environ Sci Pollut Res Int; 2023 Jan; 30(1):2086-2102. PubMed ID: 35930150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal evolution characteristics and influencing factors of the crop water use efficiency in watersheds based on the water footprint.
    Yang Y; Gao H
    Environ Monit Assess; 2024 Jun; 196(7):620. PubMed ID: 38879715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global implications of regional grain production through virtual water trade.
    Masud MB; Wada Y; Goss G; Faramarzi M
    Sci Total Environ; 2019 Apr; 659():807-820. PubMed ID: 31096411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal Dynamics of Carbon Footprint of Main Crop Production in China.
    Fan J; Guo D; Han L; Liu C; Zhang C; Xie J; Niu J; Yin L
    Int J Environ Res Public Health; 2022 Oct; 19(21):. PubMed ID: 36360778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impacts of climate change on water footprint components of rainfed and irrigated wheat in a semi-arid environment.
    Fathian M; Bazrafshan O; Jamshidi S; Jafari L
    Environ Monit Assess; 2023 Jan; 195(2):324. PubMed ID: 36692693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal variation of irrigation water requirements for grain crops under climate change in Northwest China.
    Zhang J; Deng M; Han Y; Huang H; Yang T
    Environ Sci Pollut Res Int; 2023 Apr; 30(16):45711-45724. PubMed ID: 36708471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SWAT-MODSIM-PSO optimization of multi-crop planning in the Karkheh River Basin, Iran, under the impacts of climate change.
    Fereidoon M; Koch M
    Sci Total Environ; 2018 Jul; 630():502-516. PubMed ID: 29486443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying the impact of climate change on crop yield and water footprint of rice in the Nam Oon Irrigation Project, Thailand.
    Shrestha S; Chapagain R; Babel MS
    Sci Total Environ; 2017 Dec; 599-600():689-699. PubMed ID: 28494294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Comparison of potential yield and resource utilization efficiency of main food crops in three provinces of Northeast China under climate change].
    Wang XY; Yang XG; Sun S; Xie WJ
    Ying Yong Sheng Tai Xue Bao; 2015 Oct; 26(10):3091-102. PubMed ID: 26995918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climate-resilient strategies for sustainable management of water resources and agriculture.
    Srivastav AL; Dhyani R; Ranjan M; Madhav S; Sillanpää M
    Environ Sci Pollut Res Int; 2021 Aug; 28(31):41576-41595. PubMed ID: 34097218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of precipitation and temperature on crop production variability in northeast Iran.
    Bannayan M; Lotfabadi SS; Sanjani S; Mohamadian A; Aghaalikhani M
    Int J Biometeorol; 2011 May; 55(3):387-401. PubMed ID: 20706741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal allocation of agricultural water resources in Yanghe watershed considering blue water to green water ratio.
    Weng C; Zeng Y; Liu D; Zhang J; He L
    J Sci Food Agric; 2023 May; 103(7):3558-3568. PubMed ID: 36719269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of the water footprint of rice production under different rainfall years in Jilin Province, China.
    Li H; Qin L; He H
    J Sci Food Agric; 2018 Jun; 98(8):3001-3013. PubMed ID: 29193107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dataset of the suitability of major food crops in Africa under climate change.
    Chemura A; Gleixner S; Gornott C
    Sci Data; 2024 Mar; 11(1):294. PubMed ID: 38485989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impacts of interannual climate variability and agricultural inputs on water footprint of crop production in an irrigation district of China.
    Sun S; Wu P; Wang Y; Zhao X; Liu J; Zhang X
    Sci Total Environ; 2013 Feb; 444():498-507. PubMed ID: 23295177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Areal changes of lentic water bodies within an agricultural basin of the Argentinean pampas. Disentangling land management from climatic causes.
    Booman GC; Calandroni M; Laterra P; Cabria F; Iribarne O; Vázquez P
    Environ Manage; 2012 Dec; 50(6):1058-67. PubMed ID: 22990683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.