These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 38527552)
41. Suppressing Nitrite-oxidizing Bacteria Growth to Achieve Nitrogen Removal from Domestic Wastewater via Anammox Using Intermittent Aeration with Low Dissolved Oxygen. Ma B; Bao P; Wei Y; Zhu G; Yuan Z; Peng Y Sci Rep; 2015 Sep; 5():13048. PubMed ID: 26354321 [TBL] [Abstract][Full Text] [Related]
42. The role of the external mass transfer resistance in nitrite oxidizing bacteria repression in biofilm-based partial nitritation/anammox reactors. Pérez J; Laureni M; van Loosdrecht MCM; Persson F; Gustavsson DJI Water Res; 2020 Nov; 186():116348. PubMed ID: 32911269 [TBL] [Abstract][Full Text] [Related]
43. Microbial dynamics reveal the adaptation strategies of ecological niche in distinct anammox consortia under mainstream conditions. Zhang Q; Zhang J; Zhao L; Liu W; Chen L; Cai T; Ji XM Environ Res; 2022 Dec; 215(Pt 1):114318. PubMed ID: 36116498 [TBL] [Abstract][Full Text] [Related]
44. Outcompeting nitrite-oxidizing bacteria in single-stage nitrogen removal in sewage treatment plants: a model-based study. Pérez J; Lotti T; Kleerebezem R; Picioreanu C; van Loosdrecht MCM Water Res; 2014 Dec; 66():208-218. PubMed ID: 25216301 [TBL] [Abstract][Full Text] [Related]
45. Challenges of suppressing nitrite-oxidizing bacteria in membrane aerated biofilm reactors by low dissolved oxygen control. Lu Y; Liu T; Niu C; Duan H; Zheng M; Hu S; Yuan Z; Wang H; Guo J Water Res; 2023 Dec; 247():120754. PubMed ID: 37897992 [TBL] [Abstract][Full Text] [Related]
46. Nitrite oxidizing bacteria (NOB) contained in influent deteriorate mainstream NOB suppression by sidestream inactivation. Duan H; Ye L; Wang Q; Zheng M; Lu X; Wang Z; Yuan Z Water Res; 2019 Oct; 162():331-338. PubMed ID: 31288143 [TBL] [Abstract][Full Text] [Related]
47. Microbial community evolution in partial nitritation/anammox process: From sidestream to mainstream. Yang Y; Zhang L; Cheng J; Zhang S; Li X; Peng Y Bioresour Technol; 2018 Mar; 251():327-333. PubMed ID: 29289877 [TBL] [Abstract][Full Text] [Related]
48. Light Irradiation Enables Rapid Start-Up of Nitritation through Suppressing Wang L; Qiu S; Guo J; Ge S Environ Sci Technol; 2021 Oct; 55(19):13297-13305. PubMed ID: 34529402 [TBL] [Abstract][Full Text] [Related]
49. Achieving robust nitritation in a modified continuous-flow reactor: From micro-granule cultivation to nitrite-oxidizing bacteria elimination. Liu W; Song J; Wang J; Ji X; Shen Y; Yang D J Environ Sci (China); 2023 Feb; 124():117-129. PubMed ID: 36182122 [TBL] [Abstract][Full Text] [Related]
50. Conversion of full nitritation to partial nitritation/anammox in a continuous granular reactor for low-strength ammonium wastewater treatment at 20 °C. Qian F; Huang Z; Liu Y; Grace OOW; Wang J; Shi G Biodegradation; 2021 Feb; 32(1):87-98. PubMed ID: 33449262 [TBL] [Abstract][Full Text] [Related]
51. Achieving high-rate partial nitritation with aerobic granular sludge at low temperatures. Liu W; Shen Y; Yang D Biodegradation; 2022 Feb; 33(1):45-58. PubMed ID: 34727273 [TBL] [Abstract][Full Text] [Related]
52. Simulation and experimental verification of nitrite-oxidizing bacteria inhibition by alternating aerobic/anoxic strategy. Gu X; Huang W; Xie Y; Huang Y; Zhang M Bioresour Technol; 2022 Aug; 358():127441. PubMed ID: 35680091 [TBL] [Abstract][Full Text] [Related]
53. Nitrogen removal by a Hydroxyapatite-enhanced Micro-granule type One-stage partial Nitritation/anammox process following anaerobic membrane bioreactor treating municipal wastewater. Chen Y; Feng G; Guo G; Luo Z; Rong C; Wang T; Guo Y; Li YY Bioresour Technol; 2022 Mar; 348():126740. PubMed ID: 35074463 [TBL] [Abstract][Full Text] [Related]
54. Enhancing the in-situ enrichment of anammox bacteria in aerobic granules to achieve high-rate CANON at low temperatures. Liu W; Wang Q; Shen Y; Yang D Chemosphere; 2021 Sep; 278():130395. PubMed ID: 33819889 [TBL] [Abstract][Full Text] [Related]
55. Multiple strategies for maintaining stable partial nitritation of low-strength ammonia wastewater. Sui Q; Jiang L; Di F; Yue W; Chen Y; Wang H; Chen M; Wei Y Sci Total Environ; 2020 Nov; 742():140542. PubMed ID: 32623174 [TBL] [Abstract][Full Text] [Related]
56. Mainstream nitrogen removal in membrane aerated biofilm reactor at minimal lumen pressure. Chen R; Zhou Y Sci Total Environ; 2022 Apr; 818():151758. PubMed ID: 34801505 [TBL] [Abstract][Full Text] [Related]
57. Achieving robust mainstream nitrite shunt at pilot-scale with integrated sidestream sludge treatment and step-feed. Duan H; Watts S; Zheng M; Wang Z; Zhao J; Li H; Liu P; Dwyer J; McPhee P; Rattier M; Larsen E; Yuan Z; Hu S Water Res; 2022 Sep; 223():119034. PubMed ID: 36067606 [TBL] [Abstract][Full Text] [Related]
58. Overcoming Nitrite Oxidizing Bacteria Adaptation through Alternating Sludge Treatment with Free Nitrous Acid and Free Ammonia. Duan H; Ye L; Lu X; Yuan Z Environ Sci Technol; 2019 Feb; 53(4):1937-1946. PubMed ID: 30638367 [TBL] [Abstract][Full Text] [Related]
59. Start up of partial nitritation-anammox process using intermittently aerated sequencing batch reactor: Performance and microbial community dynamics. Qiu S; Hu Y; Liu R; Sheng X; Chen L; Wu G; Hu H; Zhan X Sci Total Environ; 2019 Jan; 647():1188-1198. PubMed ID: 30180327 [TBL] [Abstract][Full Text] [Related]
60. Achieving robust mainstream nitritation by implementing light irradiation: long-term performance and microbial dynamics. Chu Z; Huang D; Huang X; He J; Chen L; Wang J; Rong H Bioresour Technol; 2023 Feb; 369():128284. PubMed ID: 36368486 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]