These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 38527800)

  • 1. Phytohormonal regulation determines the organization pattern of shoot aerenchyma in greater duckweed (Spirodela polyrhiza).
    Kim M; Hyeon DY; Kim K; Hwang D; Lee Y
    Plant Physiol; 2024 Jul; 195(4):2694-2711. PubMed ID: 38527800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of ADP-glucose pyrophosphorylase expression during turion formation induced by abscisic acid in Spirodela polyrhiza (greater duckweed).
    Wang W; Messing J
    BMC Plant Biol; 2012 Jan; 12():5. PubMed ID: 22235974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ethylene receptor regulates Typha angustifolia leaf aerenchyma morphogenesis and cell fate.
    Liu H; Hao N; Jia Y; Liu X; Ni X; Wang M; Liu W
    Planta; 2019 Jul; 250(1):381-390. PubMed ID: 31062160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological and Transcriptomic Analysis Reveals Distorted Ion Homeostasis and Responses in the Freshwater Plant
    Fu L; Ding Z; Sun X; Zhang J
    Genes (Basel); 2019 Sep; 10(10):. PubMed ID: 31554307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-Wide Analysis of the Growth-Regulating Factor (GRF) Family in Aquatic Plants and Their Roles in the ABA-Induced Turion Formation of
    Li G; Chen Y; Zhao X; Yang J; Wang X; Li X; Hu S; Hou H
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lysigenous aerenchyma formation in Arabidopsis is controlled by LESION SIMULATING DISEASE1.
    Mühlenbock P; Plaszczyca M; Plaszczyca M; Mellerowicz E; Karpinski S
    Plant Cell; 2007 Nov; 19(11):3819-30. PubMed ID: 18055613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic response is more sensitive to water deficit in shoots than roots of Vitis riparia (Michx.).
    Khadka VS; Vaughn K; Xie J; Swaminathan P; Ma Q; Cramer GR; Fennell AY
    BMC Plant Biol; 2019 Feb; 19(1):72. PubMed ID: 30760212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification, Phylogeny, and Comparative Expression of the Lipoxygenase Gene Family of the Aquatic Duckweed,
    Upadhyay RK; Edelman M; Mattoo AK
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33333747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct mechanisms for aerenchyma formation in leaf sheaths of rice genotypes displaying a quiescence or escape strategy for flooding tolerance.
    Parlanti S; Kudahettige NP; Lombardi L; Mensuali-Sodi A; Alpi A; Perata P; Pucciariello C
    Ann Bot; 2011 Jun; 107(8):1335-43. PubMed ID: 21489969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcript profiles in cortical cells of maize primary root during ethylene-induced lysigenous aerenchyma formation under aerobic conditions.
    Takahashi H; Yamauchi T; Rajhi I; Nishizawa NK; Nakazono M
    Ann Bot; 2015 May; 115(6):879-94. PubMed ID: 25858325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethylene-dependent aerenchyma formation in adventitious roots is regulated differently in rice and maize.
    Yamauchi T; Tanaka A; Mori H; Takamure I; Kato K; Nakazono M
    Plant Cell Environ; 2016 Oct; 39(10):2145-57. PubMed ID: 27169562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct responses of frond and root to increasing nutrient availability in a floating clonal plant.
    Jin Y; Zhang Q; Zhang LM; Lei NF; Chen JS; Xue W; Yu FH
    PLoS One; 2021; 16(10):e0258253. PubMed ID: 34634063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatio-temporal dynamics in global rice gene expression (Oryza sativa L.) in response to high ammonium stress.
    Sun L; Di D; Li G; Kronzucker HJ; Shi W
    J Plant Physiol; 2017 May; 212():94-104. PubMed ID: 28282528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Programmed cell death and aerenchyma formation in roots.
    Drew MC; He CJ; Morgan PW
    Trends Plant Sci; 2000 Mar; 5(3):123-7. PubMed ID: 10707078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic analysis of the polyamine biosynthesis pathway in duckweed Spirodela polyrhiza L.: presence of the arginine decarboxylase pathway, absence of the ornithine decarboxylase pathway, and response to abiotic stresses.
    Upadhyay RK; Shao J; Mattoo AK
    Planta; 2021 Oct; 254(5):108. PubMed ID: 34694486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutualistic fungus Phomopsis liquidambari increases root aerenchyma formation through auxin-mediated ethylene accumulation in rice (Oryza sativa L.).
    Hu LY; Li D; Sun K; Cao W; Fu WQ; Zhang W; Dai CC
    Plant Physiol Biochem; 2018 Sep; 130():367-376. PubMed ID: 30055345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The "Duckweed Dip": Aquatic
    Islam T; Kalkar S; Tinker-Kulberg R; Ignatova T; Josephs EA
    ACS Synth Biol; 2024 Feb; 13(2):687-691. PubMed ID: 38127817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth Promotion of Giant Duckweed
    Toyama T; Mori K; Tanaka Y; Ike M; Morikawa M
    Mol Plant Microbe Interact; 2022 Jan; 35(1):28-38. PubMed ID: 34622686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of auxin and ethylene in aerenchyma formation in sugarcane roots.
    Tavares EQP; Grandis A; Lembke CG; Souza GM; Purgatto E; De Souza AP; Buckeridge MS
    Plant Signal Behav; 2018 Mar; 13(3):e1422464. PubMed ID: 29286887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inter-tissue and inter-organ signaling in drought stress response and phenotyping of drought tolerance.
    Kuromori T; Fujita M; Takahashi F; Yamaguchi-Shinozaki K; Shinozaki K
    Plant J; 2022 Jan; 109(2):342-358. PubMed ID: 34863007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.