These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 38527917)
1. Variable gut pH as a potential mechanism of tolerance to Bacillus thuringiensis subsp. israelensis toxins in the biting midge Culicoides sonorensis. Osborne CJ; Su T; Silver KS; Cohnstaedt LW Pest Manag Sci; 2024 Aug; 80(8):4006-4012. PubMed ID: 38527917 [TBL] [Abstract][Full Text] [Related]
2. Wide-scale application of Bti/Bs biolarvicide in different aquatic habitat types in urban and peri-urban Malindi, Kenya. Mwangangi JM; Kahindi SC; Kibe LW; Nzovu JG; Luethy P; Githure JI; Mbogo CM Parasitol Res; 2011 Jun; 108(6):1355-63. PubMed ID: 20730445 [TBL] [Abstract][Full Text] [Related]
3. Laboratory and semi-field evaluation of the efficacy of Derua YA; Tungu PK; Malima RC; Mwingira V; Kimambo AG; Batengana BM; Machafuko P; Sambu EZ; Mgaya YD; Kisinza WN Curr Res Parasitol Vector Borne Dis; 2022; 2():100089. PubMed ID: 35664894 [TBL] [Abstract][Full Text] [Related]
4. Transcription profiling of resistance to Bti toxins in the mosquito Aedes aegypti using next-generation sequencing. Paris M; Melodelima C; Coissac E; Tetreau G; Reynaud S; David JP; Despres L J Invertebr Pathol; 2012 Feb; 109(2):201-8. PubMed ID: 22115744 [TBL] [Abstract][Full Text] [Related]
5. Mosquitocidal potential of silver nanoparticles synthesized using local isolates of Bacillus thuringiensis subsp. israelensis and their synergistic effect with a commercial strain of B. thuringiensis subsp. israelensis. Thammasittirong A; Prigyai K; Thammasittirong SN Acta Trop; 2017 Dec; 176():91-97. PubMed ID: 28754251 [TBL] [Abstract][Full Text] [Related]
6. Production of the bioinsecticide Bacillus thuringiensis subsp. israelensis with deltamethrin increases toxicity towards mosquito larvae. Tetreau G; Patil CD; Chandor-Proust A; Salunke BK; Patil SV; Després L Lett Appl Microbiol; 2013 Aug; 57(2):151-6. PubMed ID: 23594143 [TBL] [Abstract][Full Text] [Related]
7. Long-term exposure of Aedes aegypti to Bacillus thuringiensis svar. israelensis did not involve altered susceptibility to this microbial larvicide or to other control agents. Carvalho KDS; Crespo MM; Araújo AP; da Silva RS; de Melo-Santos MAV; de Oliveira CMF; Silva-Filha MHNL Parasit Vectors; 2018 Dec; 11(1):673. PubMed ID: 30594214 [TBL] [Abstract][Full Text] [Related]
8. Comparative laboratory and field study of biorational insecticides for Culicoides biting midge management in larval developmental sites. Foxi C; Delrio G; Luciano P; Mannu R; Ruiu L Acta Trop; 2019 Oct; 198():105097. PubMed ID: 31325415 [TBL] [Abstract][Full Text] [Related]
9. Analysis of mosquito larvicidal potential exhibited by vegetative cells of Bacillus thuringiensis subsp. israelensis. Walther CJ; Couche GA; Pfannenstiel MA; Egan SE; Bivin LA; Nickerson KW Appl Environ Microbiol; 1986 Oct; 52(4):650-3. PubMed ID: 3777922 [TBL] [Abstract][Full Text] [Related]
11. Bacterial microbiota of Aedes aegypti mosquito larvae is altered by intoxication with Bacillus thuringiensis israelensis. Tetreau G; Grizard S; Patil CD; Tran FH; Tran Van V; Stalinski R; Laporte F; Mavingui P; Després L; Valiente Moro C Parasit Vectors; 2018 Mar; 11(1):121. PubMed ID: 29499735 [TBL] [Abstract][Full Text] [Related]
12. Adverse effects of mosquito control using Bacillus thuringiensis var. israelensis: Reduced chironomid abundances in mesocosm, semi-field and field studies. Allgeier S; Kästel A; Brühl CA Ecotoxicol Environ Saf; 2019 Mar; 169():786-796. PubMed ID: 30597777 [TBL] [Abstract][Full Text] [Related]
13. Gene expression patterns and sequence polymorphisms associated with mosquito resistance to Bacillus thuringiensis israelensis toxins. Després L; Stalinski R; Tetreau G; Paris M; Bonin A; Navratil V; Reynaud S; David JP BMC Genomics; 2014 Oct; 15(1):926. PubMed ID: 25341495 [TBL] [Abstract][Full Text] [Related]
14. Monitoring resistance to Bacillus thuringiensis subsp. israelensis in the field by performing bioassays with each Cry toxin separately. Tetreau G; Stalinski R; David JP; Després L Mem Inst Oswaldo Cruz; 2013 Nov; 108(7):894-900. PubMed ID: 24037105 [TBL] [Abstract][Full Text] [Related]
15. Alkaline phosphatases are involved in the response of Aedes aegypti larvae to intoxication with Bacillus thuringiensis subsp. israelensis Cry toxins. Stalinski R; Laporte F; Després L; Tetreau G Environ Microbiol; 2016 Mar; 18(3):1022-36. PubMed ID: 26663676 [TBL] [Abstract][Full Text] [Related]
16. Field evaluation against Aedes aegypti larvae of aluminum-carboxymethylcellulose-encapsulated spore-toxin complex formulation of Bacillus thuringiensis serovar israelensis. Aguilar-Meza O; Ramírez-Suero M; Bernal JS; Ramírez-Lepe M J Econ Entomol; 2010 Jun; 103(3):570-6. PubMed ID: 20568600 [TBL] [Abstract][Full Text] [Related]
17. Mortality Patterns of Simulium vittatum Larvae (Diptera: Simuliidae) Following Exposure to Insecticidal Proteins Produced by Bacillus thuringiensis var. israelensis. Iburg JP; Gray EW; Noblet R J Am Mosq Control Assoc; 2015 Mar; 31(1):44-51. PubMed ID: 25843175 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of Larval Medium in the Controlled Current Toxicity Test. Kerr SM; Gray EW; Batzer D J Am Mosq Control Assoc; 2019 Dec; 35(4):295-298. PubMed ID: 31922940 [TBL] [Abstract][Full Text] [Related]
19. Laboratory and simulated field evaluation of a new recombinant of Bacillus thuringiensis ssp. israelensis and Bacillus sphaericus against Culex mosquito larvae (Diptera: Culicidae). Zahiri NS; Federici BA; Mulla MS J Med Entomol; 2004 May; 41(3):423-9. PubMed ID: 15185945 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of polymer-based granular formulations of Bacillus thuringiensis israelensis against larval Aedes aegypti in the laboratory. Maldonado Blanco MG; Galán Wong LJ; Rodríguez Padilla C; Quiroz Martínez H J Am Mosq Control Assoc; 2002 Dec; 18(4):352-8. PubMed ID: 12542194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]