BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38527947)

  • 1. Photon Management Enabled by Opal and Inverse Opal Photonic Crystals: from Photocatalysis to Photoluminescence Regulation.
    Wang H; Cheng Y; Zhu J; Zhang L
    Chempluschem; 2024 Mar; ():e202400002. PubMed ID: 38527947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning and transferring slow photons from TiO
    Madanu TL; Mouchet SR; Deparis O; Liu J; Li Y; Su BL
    J Colloid Interface Sci; 2023 Mar; 634():290-299. PubMed ID: 36535165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulating multi-spectral slow photons in bilayer inverse opal TiO
    Lourdu Madanu T; Chaabane L; Mouchet SR; Deparis O; Su BL
    J Colloid Interface Sci; 2023 Oct; 647():233-245. PubMed ID: 37253292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slow Photons for Photocatalysis and Photovoltaics.
    Liu J; Zhao H; Wu M; Van der Schueren B; Li Y; Deparis O; Ye J; Ozin GA; Hasan T; Su BL
    Adv Mater; 2017 May; 29(17):. PubMed ID: 28165167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inverse Opal Photonic Crystals as a Strategy to Improve Photocatalysis: Underexplored Questions.
    Curti M; Schneider J; Bahnemann DW; Mendive CB
    J Phys Chem Lett; 2015 Oct; 6(19):3903-10. PubMed ID: 26722891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy transfer and visible-infrared quantum cutting photoluminescence modification in Tm-Yb codoped YPO(4) inverse opal photonic crystals.
    Wang S; Qiu J; Wang Q; Zhou D; Yang Z
    Appl Opt; 2015 Aug; 54(22):6827-31. PubMed ID: 26368098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous emission of semiconductor quantum dots in inverse opal SiO2 photonic crystals at different temperatures.
    Yang P; Yang Y; Wang Y; Gao J; Sui N; Chi X; Zou L; Zhang HZ
    Luminescence; 2016 Feb; 31(1):4-7. PubMed ID: 26781789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increasing the conversion efficiency of dye-sensitized TiO2 photoelectrochemical cells by coupling to photonic crystals.
    Halaoui LI; Abrams NM; Mallouk TE
    J Phys Chem B; 2005 Apr; 109(13):6334-42. PubMed ID: 16851706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene Quantum Dot-TiO
    Apostolaki MA; Toumazatou A; Antoniadou M; Sakellis E; Xenogiannopoulou E; Gardelis S; Boukos N; Falaras P; Dimoulas A; Likodimos V
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33371303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of Inverse-Opal ZnIn
    Xie Y; Wu Z; Qi S; Luo J; Pi S; Xu H; Zhang S; Xu D; Zhang S; Yang X
    Nanomaterials (Basel); 2024 May; 14(10):. PubMed ID: 38786799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of the optical band structure of liquid crystal infiltrated inverse opal by a photoinduced nematic-isotropic phase transition.
    Kubo S; Gu ZZ; Takahashi K; Ohko Y; Sato O; Fujishima A
    J Am Chem Soc; 2002 Sep; 124(37):10950-1. PubMed ID: 12224921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres.
    Blanco A; Chomski E; Grabtchak S; Ibisate M; John S; Leonard SW; Lopez C; Meseguer F; Miguez H; Mondia JP; Ozin GA; Toader O; van Driel HM
    Nature; 2000 May; 405(6785):437-40. PubMed ID: 10839534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling of Ag Nanoparticle with Inverse Opal Photonic Crystals as a Novel Strategy for Upconversion Emission Enhancement of NaYF4: Yb(3+), Er(3+) Nanoparticles.
    Shao B; Yang Z; Wang Y; Li J; Yang J; Qiu J; Song Z
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25211-8. PubMed ID: 26496243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slow-Photon-Effect-Induced Photoelectrical-Conversion Efficiency Enhancement for Carbon-Quantum-Dot-Sensitized Inorganic CsPbBr
    Zhou S; Tang R; Yin L
    Adv Mater; 2017 Nov; 29(43):. PubMed ID: 28994491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light harvesting in photonic crystals revisited: why do slow photons at the blue edge enhance absorption?
    Deparis O; Mouchet SR; Su BL
    Phys Chem Chem Phys; 2015 Nov; 17(45):30525-32. PubMed ID: 26517229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterostructured CoO
    Loukopoulos S; Toumazatou A; Sakellis E; Xenogiannopoulou E; Boukos N; Dimoulas A; Likodimos V
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32993143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rutile TiO2 inverse opal with photonic bandgap in the UV-visible range.
    Li Y; Piret F; LĂ©onard T; Su BL
    J Colloid Interface Sci; 2010 Aug; 348(1):43-8. PubMed ID: 20466381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design.
    Chen X; Ye J; Ouyang S; Kako T; Li Z; Zou Z
    ACS Nano; 2011 Jun; 5(6):4310-8. PubMed ID: 21604767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2D and 3D photonic crystal materials for photocatalysis and electrochemical energy storage and conversion.
    Collins G; Armstrong E; McNulty D; O'Hanlon S; Geaney H; O'Dwyer C
    Sci Technol Adv Mater; 2016; 17(1):563-582. PubMed ID: 27877904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photonic bandgap extension of surface-disordered 3D photonic crystals based on the TiO2 inverse opal architecture.
    Wang A; Liu W; Tang J; Chen SL; Dong P
    Opt Lett; 2014 Apr; 39(8):2386-9. PubMed ID: 24978999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.