These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38527947)

  • 1. Photon Management Enabled by Opal and Inverse Opal Photonic Crystals: from Photocatalysis to Photoluminescence Regulation.
    Wang H; Cheng Y; Zhu J; Zhang L
    Chempluschem; 2024 Jul; 89(7):e202400002. PubMed ID: 38527947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning and transferring slow photons from TiO
    Madanu TL; Mouchet SR; Deparis O; Liu J; Li Y; Su BL
    J Colloid Interface Sci; 2023 Mar; 634():290-299. PubMed ID: 36535165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulating multi-spectral slow photons in bilayer inverse opal TiO
    Lourdu Madanu T; Chaabane L; Mouchet SR; Deparis O; Su BL
    J Colloid Interface Sci; 2023 Oct; 647():233-245. PubMed ID: 37253292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slow Photons for Photocatalysis and Photovoltaics.
    Liu J; Zhao H; Wu M; Van der Schueren B; Li Y; Deparis O; Ye J; Ozin GA; Hasan T; Su BL
    Adv Mater; 2017 May; 29(17):. PubMed ID: 28165167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inverse Opal Photonic Crystals as a Strategy to Improve Photocatalysis: Underexplored Questions.
    Curti M; Schneider J; Bahnemann DW; Mendive CB
    J Phys Chem Lett; 2015 Oct; 6(19):3903-10. PubMed ID: 26722891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy transfer and visible-infrared quantum cutting photoluminescence modification in Tm-Yb codoped YPO(4) inverse opal photonic crystals.
    Wang S; Qiu J; Wang Q; Zhou D; Yang Z
    Appl Opt; 2015 Aug; 54(22):6827-31. PubMed ID: 26368098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous emission of semiconductor quantum dots in inverse opal SiO2 photonic crystals at different temperatures.
    Yang P; Yang Y; Wang Y; Gao J; Sui N; Chi X; Zou L; Zhang HZ
    Luminescence; 2016 Feb; 31(1):4-7. PubMed ID: 26781789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increasing the conversion efficiency of dye-sensitized TiO2 photoelectrochemical cells by coupling to photonic crystals.
    Halaoui LI; Abrams NM; Mallouk TE
    J Phys Chem B; 2005 Apr; 109(13):6334-42. PubMed ID: 16851706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene Quantum Dot-TiO
    Apostolaki MA; Toumazatou A; Antoniadou M; Sakellis E; Xenogiannopoulou E; Gardelis S; Boukos N; Falaras P; Dimoulas A; Likodimos V
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33371303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of Inverse-Opal ZnIn
    Xie Y; Wu Z; Qi S; Luo J; Pi S; Xu H; Zhang S; Xu D; Zhang S; Yang X
    Nanomaterials (Basel); 2024 May; 14(10):. PubMed ID: 38786799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of the optical band structure of liquid crystal infiltrated inverse opal by a photoinduced nematic-isotropic phase transition.
    Kubo S; Gu ZZ; Takahashi K; Ohko Y; Sato O; Fujishima A
    J Am Chem Soc; 2002 Sep; 124(37):10950-1. PubMed ID: 12224921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres.
    Blanco A; Chomski E; Grabtchak S; Ibisate M; John S; Leonard SW; Lopez C; Meseguer F; Miguez H; Mondia JP; Ozin GA; Toader O; van Driel HM
    Nature; 2000 May; 405(6785):437-40. PubMed ID: 10839534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling of Ag Nanoparticle with Inverse Opal Photonic Crystals as a Novel Strategy for Upconversion Emission Enhancement of NaYF4: Yb(3+), Er(3+) Nanoparticles.
    Shao B; Yang Z; Wang Y; Li J; Yang J; Qiu J; Song Z
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25211-8. PubMed ID: 26496243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slow-Photon-Effect-Induced Photoelectrical-Conversion Efficiency Enhancement for Carbon-Quantum-Dot-Sensitized Inorganic CsPbBr
    Zhou S; Tang R; Yin L
    Adv Mater; 2017 Nov; 29(43):. PubMed ID: 28994491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light harvesting in photonic crystals revisited: why do slow photons at the blue edge enhance absorption?
    Deparis O; Mouchet SR; Su BL
    Phys Chem Chem Phys; 2015 Nov; 17(45):30525-32. PubMed ID: 26517229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterostructured CoO
    Loukopoulos S; Toumazatou A; Sakellis E; Xenogiannopoulou E; Boukos N; Dimoulas A; Likodimos V
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32993143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rutile TiO2 inverse opal with photonic bandgap in the UV-visible range.
    Li Y; Piret F; LĂ©onard T; Su BL
    J Colloid Interface Sci; 2010 Aug; 348(1):43-8. PubMed ID: 20466381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design.
    Chen X; Ye J; Ouyang S; Kako T; Li Z; Zou Z
    ACS Nano; 2011 Jun; 5(6):4310-8. PubMed ID: 21604767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermally Driven Photonic Actuator Based on Silica Opal Photonic Crystal with Liquid Crystal Elastomer.
    Xing H; Li J; Shi Y; Guo J; Wei J
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9440-5. PubMed ID: 26996608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photonic bandgap extension of surface-disordered 3D photonic crystals based on the TiO2 inverse opal architecture.
    Wang A; Liu W; Tang J; Chen SL; Dong P
    Opt Lett; 2014 Apr; 39(8):2386-9. PubMed ID: 24978999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.