These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Slow Photons for Photocatalysis and Photovoltaics. Liu J; Zhao H; Wu M; Van der Schueren B; Li Y; Deparis O; Ye J; Ozin GA; Hasan T; Su BL Adv Mater; 2017 May; 29(17):. PubMed ID: 28165167 [TBL] [Abstract][Full Text] [Related]
5. Inverse Opal Photonic Crystals as a Strategy to Improve Photocatalysis: Underexplored Questions. Curti M; Schneider J; Bahnemann DW; Mendive CB J Phys Chem Lett; 2015 Oct; 6(19):3903-10. PubMed ID: 26722891 [TBL] [Abstract][Full Text] [Related]
6. Energy transfer and visible-infrared quantum cutting photoluminescence modification in Tm-Yb codoped YPO(4) inverse opal photonic crystals. Wang S; Qiu J; Wang Q; Zhou D; Yang Z Appl Opt; 2015 Aug; 54(22):6827-31. PubMed ID: 26368098 [TBL] [Abstract][Full Text] [Related]
7. Spontaneous emission of semiconductor quantum dots in inverse opal SiO2 photonic crystals at different temperatures. Yang P; Yang Y; Wang Y; Gao J; Sui N; Chi X; Zou L; Zhang HZ Luminescence; 2016 Feb; 31(1):4-7. PubMed ID: 26781789 [TBL] [Abstract][Full Text] [Related]
8. Increasing the conversion efficiency of dye-sensitized TiO2 photoelectrochemical cells by coupling to photonic crystals. Halaoui LI; Abrams NM; Mallouk TE J Phys Chem B; 2005 Apr; 109(13):6334-42. PubMed ID: 16851706 [TBL] [Abstract][Full Text] [Related]
10. Construction of Inverse-Opal ZnIn Xie Y; Wu Z; Qi S; Luo J; Pi S; Xu H; Zhang S; Xu D; Zhang S; Yang X Nanomaterials (Basel); 2024 May; 14(10):. PubMed ID: 38786799 [TBL] [Abstract][Full Text] [Related]
11. Control of the optical band structure of liquid crystal infiltrated inverse opal by a photoinduced nematic-isotropic phase transition. Kubo S; Gu ZZ; Takahashi K; Ohko Y; Sato O; Fujishima A J Am Chem Soc; 2002 Sep; 124(37):10950-1. PubMed ID: 12224921 [TBL] [Abstract][Full Text] [Related]
12. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Blanco A; Chomski E; Grabtchak S; Ibisate M; John S; Leonard SW; Lopez C; Meseguer F; Miguez H; Mondia JP; Ozin GA; Toader O; van Driel HM Nature; 2000 May; 405(6785):437-40. PubMed ID: 10839534 [TBL] [Abstract][Full Text] [Related]
13. Coupling of Ag Nanoparticle with Inverse Opal Photonic Crystals as a Novel Strategy for Upconversion Emission Enhancement of NaYF4: Yb(3+), Er(3+) Nanoparticles. Shao B; Yang Z; Wang Y; Li J; Yang J; Qiu J; Song Z ACS Appl Mater Interfaces; 2015 Nov; 7(45):25211-8. PubMed ID: 26496243 [TBL] [Abstract][Full Text] [Related]
18. Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design. Chen X; Ye J; Ouyang S; Kako T; Li Z; Zou Z ACS Nano; 2011 Jun; 5(6):4310-8. PubMed ID: 21604767 [TBL] [Abstract][Full Text] [Related]
19. Thermally Driven Photonic Actuator Based on Silica Opal Photonic Crystal with Liquid Crystal Elastomer. Xing H; Li J; Shi Y; Guo J; Wei J ACS Appl Mater Interfaces; 2016 Apr; 8(14):9440-5. PubMed ID: 26996608 [TBL] [Abstract][Full Text] [Related]
20. Photonic bandgap extension of surface-disordered 3D photonic crystals based on the TiO2 inverse opal architecture. Wang A; Liu W; Tang J; Chen SL; Dong P Opt Lett; 2014 Apr; 39(8):2386-9. PubMed ID: 24978999 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]