BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 38528101)

  • 21. Engineering of new-to-nature ribosomally synthesized and post-translationally modified peptide natural products.
    Wu C; van der Donk WA
    Curr Opin Biotechnol; 2021 Jun; 69():221-231. PubMed ID: 33556835
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioinformatic prediction and experimental validation of RiPP recognition elements.
    Shelton KE; Mitchell DA
    Methods Enzymol; 2023; 679():191-233. PubMed ID: 36682862
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A User Guide for the Identification of New RiPP Biosynthetic Gene Clusters Using a RiPPER-Based Workflow.
    Moffat AD; Santos-Aberturas J; Chandra G; Truman AW
    Methods Mol Biol; 2021; 2296():227-247. PubMed ID: 33977452
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Challenges and advances in genome mining of ribosomally synthesized and post-translationally modified peptides (RiPPs).
    Zhong Z; He B; Li J; Li YX
    Synth Syst Biotechnol; 2020 Sep; 5(3):155-172. PubMed ID: 32637669
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New developments in RiPP discovery, enzymology and engineering.
    Montalbán-López M; Scott TA; Ramesh S; Rahman IR; van Heel AJ; Viel JH; Bandarian V; Dittmann E; Genilloud O; Goto Y; Grande Burgos MJ; Hill C; Kim S; Koehnke J; Latham JA; Link AJ; Martínez B; Nair SK; Nicolet Y; Rebuffat S; Sahl HG; Sareen D; Schmidt EW; Schmitt L; Severinov K; Süssmuth RD; Truman AW; Wang H; Weng JK; van Wezel GP; Zhang Q; Zhong J; Piel J; Mitchell DA; Kuipers OP; van der Donk WA
    Nat Prod Rep; 2021 Jan; 38(1):130-239. PubMed ID: 32935693
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Out for a RiPP: challenges and advances in genome mining of ribosomal peptides from fungi.
    Kessler SC; Chooi YH
    Nat Prod Rep; 2022 Feb; 39(2):222-230. PubMed ID: 34581394
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome mining for ribosomally synthesized and post-translationally modified peptides (RiPPs) in anaerobic bacteria.
    Letzel AC; Pidot SJ; Hertweck C
    BMC Genomics; 2014 Nov; 15(1):983. PubMed ID: 25407095
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cytochromes P450 involved in bacterial RiPP biosyntheses.
    Kunakom S; Otani H; Udwary DW; Doering DT; Mouncey NJ
    J Ind Microbiol Biotechnol; 2023 Feb; 50(1):. PubMed ID: 36931895
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discovery and engineering of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products.
    Li H; Ding W; Zhang Q
    RSC Chem Biol; 2024 Feb; 5(2):90-108. PubMed ID: 38333193
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Uncovering the diversity and distribution of biosynthetic gene clusters of prochlorosins and other putative RiPPs in marine
    Arias-Orozco P; Zhou L; Yi Y; Cebrián R; Kuipers OP
    Microbiol Spectr; 2024 Jan; 12(1):e0361123. PubMed ID: 38088546
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Radical SAM Enzymes in the Biosynthesis of Ribosomally Synthesized and Post-translationally Modified Peptides (RiPPs).
    Benjdia A; Balty C; Berteau O
    Front Chem; 2017; 5():87. PubMed ID: 29167789
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New Insights into the Biosynthetic Logic of Ribosomally Synthesized and Post-translationally Modified Peptide Natural Products.
    Ortega MA; van der Donk WA
    Cell Chem Biol; 2016 Jan; 23(1):31-44. PubMed ID: 26933734
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent advances in the biosynthesis of ribosomally synthesized and posttranslationally modified peptides of fungal origin.
    Ozaki T; Minami A; Oikawa H
    J Antibiot (Tokyo); 2023 Jan; 76(1):3-13. PubMed ID: 36424516
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chimeric Leader Peptides for the Generation of Non-Natural Hybrid RiPP Products.
    Burkhart BJ; Kakkar N; Hudson GA; van der Donk WA; Mitchell DA
    ACS Cent Sci; 2017 Jun; 3(6):629-638. PubMed ID: 28691075
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expansion of RiPP biosynthetic space through integration of pan-genomics and machine learning uncovers a novel class of lanthipeptides.
    Kloosterman AM; Cimermancic P; Elsayed SS; Du C; Hadjithomas M; Donia MS; Fischbach MA; van Wezel GP; Medema MH
    PLoS Biol; 2020 Dec; 18(12):e3001026. PubMed ID: 33351797
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RRE-Finder: a Genome-Mining Tool for Class-Independent RiPP Discovery.
    Kloosterman AM; Shelton KE; van Wezel GP; Medema MH; Mitchell DA
    mSystems; 2020 Sep; 5(5):. PubMed ID: 32873609
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Radical S-Adenosylmethionine Enzymes Involved in RiPP Biosynthesis.
    Mahanta N; Hudson GA; Mitchell DA
    Biochemistry; 2017 Oct; 56(40):5229-5244. PubMed ID: 28895719
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ribosomally synthesized and post-translationally modified peptide natural products: new insights into the role of leader and core peptides during biosynthesis.
    Yang X; van der Donk WA
    Chemistry; 2013 Jun; 19(24):7662-77. PubMed ID: 23666908
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Uncovering the unexplored diversity of thioamidated ribosomal peptides in Actinobacteria using the RiPPER genome mining tool.
    Santos-Aberturas J; Chandra G; Frattaruolo L; Lacret R; Pham TH; Vior NM; Eyles TH; Truman AW
    Nucleic Acids Res; 2019 May; 47(9):4624-4637. PubMed ID: 30916321
    [TBL] [Abstract][Full Text] [Related]  

  • 40. P450-Modified Multicyclic Cyclophane-Containing Ribosomally Synthesized and Post-Translationally Modified Peptides.
    Liu CL; Wang ZJ; Shi J; Yan ZY; Zhang GD; Jiao RH; Tan RX; Ge HM
    Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202314046. PubMed ID: 38072825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.