These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 38528101)

  • 61. Engineered fatty acid biosynthesis in Streptomyces by altered catalytic function of beta-ketoacyl-acyl carrier protein synthase III.
    Smirnova N; Reynolds KA
    J Bacteriol; 2001 Apr; 183(7):2335-42. PubMed ID: 11244075
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Reconstitution of the FK228 biosynthetic pathway reveals cross talk between modular polyketide synthases and fatty acid synthase.
    Wesener SR; Potharla VY; Cheng YQ
    Appl Environ Microbiol; 2011 Feb; 77(4):1501-7. PubMed ID: 21183648
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Discovery of novel fungal RiPP biosynthetic pathways and their application for the development of peptide therapeutics.
    Vogt E; Künzler M
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5567-5581. PubMed ID: 31147756
    [TBL] [Abstract][Full Text] [Related]  

  • 64. P450-Mediated Non-natural Cyclopropanation of Dehydroalanine-Containing Thiopeptides.
    Gober JG; Ghodge SV; Bogart JW; Wever WJ; Watkins RR; Brustad EM; Bowers AA
    ACS Chem Biol; 2017 Jul; 12(7):1726-1731. PubMed ID: 28535034
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Novel types of RiPP-modifying enzymes.
    Richter D; Piel J
    Curr Opin Chem Biol; 2024 Jun; 80():102463. PubMed ID: 38729090
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Unveiling the Biosynthetic Pathway of the Ribosomally Synthesized and Post-translationally Modified Peptide Ustiloxin B in Filamentous Fungi.
    Ye Y; Minami A; Igarashi Y; Izumikawa M; Umemura M; Nagano N; Machida M; Kawahara T; Shin-Ya K; Gomi K; Oikawa H
    Angew Chem Int Ed Engl; 2016 Jul; 55(28):8072-5. PubMed ID: 27166860
    [TBL] [Abstract][Full Text] [Related]  

  • 67. How a Subfamily of Radical S-Adenosylmethionine Enzymes Became a Mainstay of Ribosomally Synthesized and Post-translationally Modified Peptide Discovery.
    Mendauletova A; Kostenko A; Lien Y; Latham J
    ACS Bio Med Chem Au; 2022 Feb; 2(1):53-59. PubMed ID: 37102180
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Global Genome Mining Reveals the Distribution of Diverse Thioamidated RiPP Biosynthesis Gene Clusters.
    Malit JJL; Wu C; Liu LL; Qian PY
    Front Microbiol; 2021; 12():635389. PubMed ID: 33995295
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Synthesis of Ribosomally Synthesized and Post-Translationally Modified Peptides Containing C-C Cross-Links.
    Laws D; Plouch EV; Blakey SB
    J Nat Prod; 2022 Oct; 85(10):2519-2539. PubMed ID: 36136399
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Protein Engineering in Ribosomally Synthesized and Post-translationally Modified Peptides (RiPPs).
    Do T; Link AJ
    Biochemistry; 2023 Jan; 62(2):201-209. PubMed ID: 35006671
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A ribosomally synthesised and post-translationally modified peptide containing a β-enamino acid and a macrocyclic motif.
    Wang S; Lin S; Fang Q; Gyampoh R; Lu Z; Gao Y; Clarke DJ; Wu K; Trembleau L; Yu Y; Kyeremeh K; Milne BF; Tabudravu J; Deng H
    Nat Commun; 2022 Aug; 13(1):5044. PubMed ID: 36028509
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The role of protein-protein interactions in the biosynthesis of ribosomally synthesized and post-translationally modified peptides.
    Sikandar A; Koehnke J
    Nat Prod Rep; 2019 Nov; 36(11):1576-1588. PubMed ID: 30920567
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Cyclisation mechanisms in the biosynthesis of ribosomally synthesised and post-translationally modified peptides.
    Truman AW
    Beilstein J Org Chem; 2016; 12():1250-68. PubMed ID: 27559376
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Disordered regions in proteusin peptides guide post-translational modification by a flavin-dependent RiPP brominase.
    Nguyen NA; Vidya FNU; Yennawar NH; Wu H; McShan AC; Agarwal V
    Nat Commun; 2024 Feb; 15(1):1265. PubMed ID: 38341413
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Modular Use of the Uniquely Small Ring A of Mersacidin Generates the Smallest Ribosomally Produced Lanthipeptide.
    Viel JH; Kuipers OP
    ACS Synth Biol; 2022 Sep; 11(9):3078-3087. PubMed ID: 36065523
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Recent Advances in Discovery, Bioengineering, and Bioactivity-Evaluation of Ribosomally Synthesized and Post-translationally Modified Peptides.
    Zhong G; Wang ZJ; Yan F; Zhang Y; Huo L
    ACS Bio Med Chem Au; 2023 Feb; 3(1):1-31. PubMed ID: 37101606
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Enzyme from an Uncultivated Sponge Bacterium Catalyzes S-Methylation in a Ribosomal Peptide.
    Helf MJ; Jud A; Piel J
    Chembiochem; 2017 Mar; 18(5):444-450. PubMed ID: 27966282
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Characterization of the enzymatic domains in the modular polyketide synthase involved in rifamycin B biosynthesis by Amycolatopsis mediterranei.
    Tang L; Yoon YJ; Choi CY; Hutchinson CR
    Gene; 1998 Aug; 216(2):255-65. PubMed ID: 9729415
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Investigations into PoyH, a promiscuous protease from polytheonamide biosynthesis.
    Helf MJ; Freeman MF; Piel J
    J Ind Microbiol Biotechnol; 2019 Mar; 46(3-4):551-563. PubMed ID: 30627933
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Recent Advances and Perspectives on Expanding the Chemical Diversity of Lasso Peptides.
    Wang M; Fage CD; He Y; Mi J; Yang Y; Li F; An X; Fan H; Song L; Zhu S; Tong Y
    Front Bioeng Biotechnol; 2021; 9():741364. PubMed ID: 34631682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.