These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 38528332)
1. Self-propulsion of a droplet induced by combined diffusiophoresis and Marangoni effects. Wang Y; Zheng L; Li G Electrophoresis; 2024 Mar; ():. PubMed ID: 38528332 [TBL] [Abstract][Full Text] [Related]
2. Nonlinear dynamics of a chemically-active drop: From steady to chaotic self-propulsion. Morozov M; Michelin S J Chem Phys; 2019 Jan; 150(4):044110. PubMed ID: 30709268 [TBL] [Abstract][Full Text] [Related]
3. Adsorption inhibition by swollen micelles may cause multistability in active droplets. Morozov M Soft Matter; 2020 Jun; 16(24):5624-5632. PubMed ID: 32530002 [TBL] [Abstract][Full Text] [Related]
4. From diffusive mass transfer in Stokes flow to low Reynolds number Marangoni boats. Ender H; Kierfeld J Eur Phys J E Soft Matter; 2021 Feb; 44(1):4. PubMed ID: 33580288 [TBL] [Abstract][Full Text] [Related]
5. Effect of non-homogeneous surface viscosity on the Marangoni migration of a droplet in viscous fluid. Manor O; Lavrenteva O; Nir A J Colloid Interface Sci; 2008 May; 321(1):142-53. PubMed ID: 18325530 [TBL] [Abstract][Full Text] [Related]
6. Marangoni Droplets of Dextran in PEG Solution and Its Motile Change Due to Coil-Globule Transition of Coexisting DNA. Furuki T; Sakuta H; Yanagisawa N; Tabuchi S; Kamo A; Shimamoto DS; Yanagisawa M ACS Appl Mater Interfaces; 2024 Aug; 16(32):43016-43025. PubMed ID: 39088740 [TBL] [Abstract][Full Text] [Related]
7. Hydrodynamics of a confined active Belousov-Zhabotinsky droplet. Chaithanya KVS; Shenoy SA; Dayal P Phys Rev E; 2022 Dec; 106(6-2):065103. PubMed ID: 36671180 [TBL] [Abstract][Full Text] [Related]
8. Lattice Boltzmann study of chemically-driven self-propelled droplets. Fadda F; Gonnella G; Lamura A; Tiribocchi A Eur Phys J E Soft Matter; 2017 Dec; 40(12):112. PubMed ID: 29256179 [TBL] [Abstract][Full Text] [Related]
10. A numerical investigation on the drainage of a surfactant-modified water droplet in paraffin oil. Lekhlifi A; Fanzar A; Antoni M Adv Colloid Interface Sci; 2015 Aug; 222():446-60. PubMed ID: 25772623 [TBL] [Abstract][Full Text] [Related]
11. Buoyancy-driven attraction of active droplets. Chen Y; Chong KL; Liu H; Verzicco R; Lohse D J Fluid Mech; 2024 Feb; 980():. PubMed ID: 38361591 [TBL] [Abstract][Full Text] [Related]
12. Drift instability in the motion of a fluid droplet with a chemically reactive surface driven by Marangoni flow. Yoshinaga N; Nagai KH; Sumino Y; Kitahata H Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016108. PubMed ID: 23005492 [TBL] [Abstract][Full Text] [Related]
13. Simple model for self-propulsion of microdroplets in surfactant solution. Ray S; Roy A Phys Rev E; 2023 Sep; 108(3-2):035102. PubMed ID: 37849129 [TBL] [Abstract][Full Text] [Related]
14. Diffusiophoresis of Weakly Charged Fluid Droplets in a General Electrolyte Solution: An Analytical Theory. Samanta S; Mahapatra P; Ohshima H; Gopmandal PP Langmuir; 2023 Sep; 39(35):12452-12466. PubMed ID: 37615654 [TBL] [Abstract][Full Text] [Related]
16. Dynamics of a self-diffusiophoretic particle in shear flow. Frankel AE; Khair AS Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013030. PubMed ID: 25122392 [TBL] [Abstract][Full Text] [Related]
17. Chemically Tuning Attractive and Repulsive Interactions between Solubilizing Oil Droplets. Wentworth CM; Castonguay AC; Moerman PG; Meredith CH; Balaj RV; Cheon SI; Zarzar LD Angew Chem Int Ed Engl; 2022 Aug; 61(32):e202204510. PubMed ID: 35678216 [TBL] [Abstract][Full Text] [Related]
18. Motion of a swimming droplet under external perturbations: A model-based approach. Suda S; Suda T; Ohmura T; Ichikawa M Phys Rev E; 2022 Sep; 106(3-1):034610. PubMed ID: 36266827 [TBL] [Abstract][Full Text] [Related]
19. Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Hu H; Larson RG Langmuir; 2005 Apr; 21(9):3972-80. PubMed ID: 15835963 [TBL] [Abstract][Full Text] [Related]
20. Lattice Boltzmann and Jones matrix calculations for the determination of the director field structure in self-propelling nematic droplets. Bahr C Phys Rev E; 2021 Oct; 104(4-1):044703. PubMed ID: 34781516 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]