These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 38528344)
1. Characterization of cellular responses and cell lysis to elevated hydrodynamic stress from benchtop perfusion bioreactors. Zhang W; Ran Q; Zhao L; Ye Q; Tan WS Biotechnol J; 2024 Mar; 19(3):e2400063. PubMed ID: 38528344 [TBL] [Abstract][Full Text] [Related]
2. Adaptation for survival: phenotype and transcriptome response of CHO cells to elevated stress induced by agitation and sparging. Sieck JB; Budach WE; Suemeghy Z; Leist C; Villiger TK; Morbidelli M; Soos M J Biotechnol; 2014 Nov; 189():94-103. PubMed ID: 25218361 [TBL] [Abstract][Full Text] [Related]
3. Isotope labeling to determine the dynamics of metabolic response in CHO cell perfusion bioreactors using MALDI-TOF-MS. Karst DJ; Steinhoff RF; Kopp MRG; Soos M; Zenobi R; Morbidelli M Biotechnol Prog; 2017 Nov; 33(6):1630-1639. PubMed ID: 28840654 [TBL] [Abstract][Full Text] [Related]
4. Minimizing hydrodynamic stress in mammalian cell culture through the lobed Taylor-Couette bioreactor. Sorg R; Tanzeglock T; Soos M; Morbidelli M; Périlleux A; Solacroup T; Broly H Biotechnol J; 2011 Dec; 6(12):1504-15. PubMed ID: 21766459 [TBL] [Abstract][Full Text] [Related]
5. In silico model-based characterization of metabolic response to harsh sparging stress in fed-batch CHO cell cultures. Hong JK; Yeo HC; Lakshmanan M; Han SH; Cha HM; Han M; Lee DY J Biotechnol; 2020 Jan; 308():10-20. PubMed ID: 31756358 [TBL] [Abstract][Full Text] [Related]
7. Understanding factors that limit the productivity of suspension-based perfusion cultures operated at high medium renewal rates. Mercille S; Johnson M; Lanthier S; Kamen AA; Massie B Biotechnol Bioeng; 2000 Feb; 67(4):435-50. PubMed ID: 10620759 [TBL] [Abstract][Full Text] [Related]
8. Modulating and optimizing Pluronic F-68 concentrations and feeding for intensified perfusion Chinese hamster ovary cell cultures. Wei Z; Xia Y; Su Y; Quan Y; Sun L; Wang S; Zhu F; Chen Z; Tian J; Wang WC; Zhou W; Yu H Biotechnol Prog; 2023; 39(4):e3340. PubMed ID: 36970759 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of various membranes at different fluxes to enable large-volume single-use perfusion bioreactors. Raza H; Tang T; Gao B; Phuangthong C; Chen CB; Pinto NDS Biotechnol Bioeng; 2024 Sep; 121(9):2678-2690. PubMed ID: 38702962 [TBL] [Abstract][Full Text] [Related]
10. Optimized process operations reduce product retention and column clogging in ATF-based perfusion cell cultures. Su Y; Wei Z; Miao Y; Sun L; Shen Y; Tang Z; Li L; Quan Y; Yu H; Wang WC; Zhou W; Tian J Appl Microbiol Biotechnol; 2021 Dec; 105(24):9125-9136. PubMed ID: 34811605 [TBL] [Abstract][Full Text] [Related]
11. An in-silico analysis of hydrodynamics and gas mass transfer characteristics in scale-down models for mammalian cell cultures. Anand A; McCahill M; Thomas J; Sood A; Kinross J; Dasgupta A; Rajendran A J Biotechnol; 2024 Jun; 388():96-106. PubMed ID: 38642816 [TBL] [Abstract][Full Text] [Related]
12. Effect of shear stress on intrinsic CHO culture state and glycosylation of recombinant tissue-type plasminogen activator protein. Senger RS; Karim MN Biotechnol Prog; 2003; 19(4):1199-209. PubMed ID: 12892482 [TBL] [Abstract][Full Text] [Related]
13. Biomass specific perfusion rate as a control lever for the continuous manufacturing of biosimilar monoclonal antibodies from CHO cell cultures. Leong J; Tang WQ; Chng J; Ler WX; Manan NA; Sim LC; Zheng ZY; Zhang W; Walsh I; Zijlstra G; Pennings M; Ng SK Biotechnol J; 2024 Jul; 19(7):e2400092. PubMed ID: 38987222 [TBL] [Abstract][Full Text] [Related]
14. A single nutrient feed supports both chemically defined NS0 and CHO fed-batch processes: Improved productivity and lactate metabolism. Ma N; Ellet J; Okediadi C; Hermes P; McCormick E; Casnocha S Biotechnol Prog; 2009; 25(5):1353-63. PubMed ID: 19637321 [TBL] [Abstract][Full Text] [Related]
15. Metabolic flux analysis of CHO cells in perfusion culture by metabolite balancing and 2D [13C, 1H] COSY NMR spectroscopy. Goudar C; Biener R; Boisart C; Heidemann R; Piret J; de Graaf A; Konstantinov K Metab Eng; 2010 Mar; 12(2):138-49. PubMed ID: 19896555 [TBL] [Abstract][Full Text] [Related]
16. Impact of aeration strategy on CHO cell performance during antibody production. Velez-Suberbie ML; Tarrant RD; Tait AS; Spencer DI; Bracewell DG Biotechnol Prog; 2013; 29(1):116-26. PubMed ID: 23074084 [TBL] [Abstract][Full Text] [Related]
17. Contributions of Chinese hamster ovary cell derived extracellular vesicles and other cellular materials to hollow fiber filter fouling during perfusion manufacturing of monoclonal antibodies. Zhang Y; Madabhushi S; Tang T; Raza H; Busch DJ; Zhao X; Ormes J; Xu S; Moroney J; Jiang R; Lin H; Liu R Biotechnol Bioeng; 2024 May; 121(5):1674-1687. PubMed ID: 38372655 [TBL] [Abstract][Full Text] [Related]
18. Process design and development of a mammalian cell perfusion culture in shake-tube and benchtop bioreactors. Wolf MKF; Müller A; Souquet J; Broly H; Morbidelli M Biotechnol Bioeng; 2019 Aug; 116(8):1973-1985. PubMed ID: 31038199 [TBL] [Abstract][Full Text] [Related]
19. Growth, metabolic activity, and productivity of immobilized and freely suspended CHO cells in perfusion culture. Hilal-Alnaqbi A; Hu AY; Zhang Z; Al-Rubeai M Biotechnol Appl Biochem; 2013; 60(4):436-45. PubMed ID: 23701045 [TBL] [Abstract][Full Text] [Related]
20. Conversion of a CHO cell culture process from perfusion to fed-batch technology without altering product quality. Meuwly F; Weber U; Ziegler T; Gervais A; Mastrangeli R; Crisci C; Rossi M; Bernard A; von Stockar U; Kadouri A J Biotechnol; 2006 May; 123(1):106-16. PubMed ID: 16324762 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]