BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38528694)

  • 41. Automated Measurement of Pancreatic Fat Deposition on Dixon MRI Using nnU-Net.
    Lin D; Wang Z; Li H; Zhang H; Deng L; Ren H; Sun S; Zheng F; Zhou J; Wang M
    J Magn Reson Imaging; 2023 Jan; 57(1):296-307. PubMed ID: 35635494
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fully Automatic Deep Learning in Bi-institutional Prostate Magnetic Resonance Imaging: Effects of Cohort Size and Heterogeneity.
    Netzer N; Weißer C; Schelb P; Wang X; Qin X; Görtz M; Schütz V; Radtke JP; Hielscher T; Schwab C; Stenzinger A; Kuder TA; Gnirs R; Hohenfellner M; Schlemmer HP; Maier-Hein KH; Bonekamp D
    Invest Radiol; 2021 Dec; 56(12):799-808. PubMed ID: 34049336
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Automated segmentation of the human supraclavicular fat depot via deep neural network in water-fat separated magnetic resonance images.
    Zhao Y; Tang C; Cui B; Somasundaram A; Raspe J; Hu X; Holzapfel C; Junker D; Hauner H; Menze B; Wu M; Karampinos D
    Quant Imaging Med Surg; 2023 Jul; 13(7):4699-4715. PubMed ID: 37456284
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Automatic segmentation of hepatocellular carcinoma on dynamic contrast-enhanced MRI based on deep learning.
    Luo X; Li P; Chen H; Zhou K; Piao S; Yang L; Hu B; Geng D
    Phys Med Biol; 2024 Mar; 69(6):. PubMed ID: 38330492
    [No Abstract]   [Full Text] [Related]  

  • 45. Lesion detection in women breast's dynamic contrast-enhanced magnetic resonance imaging using deep learning.
    Saikia S; Si T; Deb D; Bora K; Mallik S; Maulik U; Zhao Z
    Sci Rep; 2023 Dec; 13(1):22555. PubMed ID: 38110462
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development and external validation of an MRI-based neural network for brain metastasis segmentation in the AURORA multicenter study.
    Buchner JA; Kofler F; Etzel L; Mayinger M; Christ SM; Brunner TB; Wittig A; Menze B; Zimmer C; Meyer B; Guckenberger M; Andratschke N; El Shafie RA; Debus J; Rogers S; Riesterer O; Schulze K; Feldmann HJ; Blanck O; Zamboglou C; Ferentinos K; Wolff R; Eitz KA; Combs SE; Bernhardt D; Wiestler B; Peeken JC
    Radiother Oncol; 2023 Jan; 178():109425. PubMed ID: 36442609
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Clinical Evaluation of a Multiparametric Deep Learning Model for Glioblastoma Segmentation Using Heterogeneous Magnetic Resonance Imaging Data From Clinical Routine.
    Perkuhn M; Stavrinou P; Thiele F; Shakirin G; Mohan M; Garmpis D; Kabbasch C; Borggrefe J
    Invest Radiol; 2018 Nov; 53(11):647-654. PubMed ID: 29863600
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Handling missing MRI sequences in deep learning segmentation of brain metastases: a multicenter study.
    Grøvik E; Yi D; Iv M; Tong E; Nilsen LB; Latysheva A; Saxhaug C; Jacobsen KD; Helland Å; Emblem KE; Rubin DL; Zaharchuk G
    NPJ Digit Med; 2021 Feb; 4(1):33. PubMed ID: 33619361
    [TBL] [Abstract][Full Text] [Related]  

  • 49. From Dose Reduction to Contrast Maximization: Can Deep Learning Amplify the Impact of Contrast Media on Brain Magnetic Resonance Image Quality? A Reader Study.
    Bône A; Ammari S; Menu Y; Balleyguier C; Moulton E; Chouzenoux É; Volk A; Garcia GCTE; Nicolas F; Robert P; Rohé MM; Lassau N
    Invest Radiol; 2022 Aug; 57(8):527-535. PubMed ID: 35446300
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Deep learning-based automated detection and segmentation of bone and traumatic bone marrow lesions from MRI following an acute ACL tear.
    Stirling CE; Neeteson NJ; Walker REA; Boyd SK
    Comput Biol Med; 2024 Jun; 178():108791. PubMed ID: 38905892
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A radiomics-incorporated deep ensemble learning model for multi-parametric MRI-based glioma segmentation.
    Chen Y; Yang Z; Zhao J; Adamson J; Sheng Y; Yin FF; Wang C
    Phys Med Biol; 2023 Sep; 68(18):. PubMed ID: 37586382
    [No Abstract]   [Full Text] [Related]  

  • 52. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs.
    Tang F; Liang S; Zhong T; Huang X; Deng X; Zhang Y; Zhou L
    Eur Radiol; 2020 Feb; 30(2):823-832. PubMed ID: 31650265
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Performance of whole-body integrated 18F-FDG PET/MR in comparison to PET/CT for evaluation of malignant bone lesions.
    Eiber M; Takei T; Souvatzoglou M; Mayerhoefer ME; Fürst S; Gaertner FC; Loeffelbein DJ; Rummeny EJ; Ziegler SI; Schwaiger M; Beer AJ
    J Nucl Med; 2014 Feb; 55(2):191-7. PubMed ID: 24309383
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Diagnostic Performance of MRI Sequences for Evaluation of Dural Venous Sinus Thrombosis.
    Sadigh G; Mullins ME; Saindane AM
    AJR Am J Roentgenol; 2016 Jun; 206(6):1298-306. PubMed ID: 27010526
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Abbreviated Gadoxetic Acid-Enhanced MRI for the Detection of Liver Metastases in Patients With Potentially Resectable Pancreatic Ductal Adenocarcinoma.
    Yamaguchi T; Sofue K; Ueshima E; Ueno Y; Tsujita Y; Yabe S; Shirakawa S; Toyama H; Hori M; Fukumoto T; Murakami T
    J Magn Reson Imaging; 2022 Sep; 56(3):725-736. PubMed ID: 35005813
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Prediction of Bone Marrow Biopsy Results From MRI in Multiple Myeloma Patients Using Deep Learning and Radiomics.
    Wennmann M; Ming W; Bauer F; Chmelik J; Klein A; Uhlenbrock C; Grözinger M; Kahl KC; Nonnenmacher T; Debic M; Hielscher T; Thierjung H; Rotkopf LT; Stanczyk N; Sauer S; Jauch A; Götz M; Kurz FT; Schlamp K; Horger M; Afat S; Besemer B; Hoffmann M; Hoffend J; Kraemer D; Graeven U; Ringelstein A; Bonekamp D; Kleesiek J; Floca RO; Hillengass J; Mai EK; Weinhold N; Weber TF; Goldschmidt H; Schlemmer HP; Maier-Hein K; Delorme S; Neher P
    Invest Radiol; 2023 Oct; 58(10):754-765. PubMed ID: 37222527
    [TBL] [Abstract][Full Text] [Related]  

  • 57. MRI-Based Breast Cancer Classification and Localization by Multiparametric Feature Extraction and Combination Using Deep Learning.
    Cong C; Li X; Zhang C; Zhang J; Sun K; Liu L; Ambale-Venkatesh B; Chen X; Wang Y
    J Magn Reson Imaging; 2024 Jan; 59(1):148-161. PubMed ID: 37013422
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Deep learning-based automatic segmentation of meningioma from multiparametric MRI for preoperative meningioma differentiation using radiomic features: a multicentre study.
    Chen H; Li S; Zhang Y; Liu L; Lv X; Yi Y; Ruan G; Ke C; Feng Y
    Eur Radiol; 2022 Oct; 32(10):7248-7259. PubMed ID: 35420299
    [TBL] [Abstract][Full Text] [Related]  

  • 59. MRI of non-specific low back pain and/or lumbar radiculopathy: do we need T1 when using a sagittal T2-weighted Dixon sequence?
    Zanchi F; Richard R; Hussami M; Monier A; Knebel JF; Omoumi P
    Eur Radiol; 2020 May; 30(5):2583-2593. PubMed ID: 32020402
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study.
    Kickingereder P; Isensee F; Tursunova I; Petersen J; Neuberger U; Bonekamp D; Brugnara G; Schell M; Kessler T; Foltyn M; Harting I; Sahm F; Prager M; Nowosielski M; Wick A; Nolden M; Radbruch A; Debus J; Schlemmer HP; Heiland S; Platten M; von Deimling A; van den Bent MJ; Gorlia T; Wick W; Bendszus M; Maier-Hein KH
    Lancet Oncol; 2019 May; 20(5):728-740. PubMed ID: 30952559
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.