These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 38528695)

  • 1. Improving Diagnostic Performance of MRI for Temporal Lobe Epilepsy With Deep Learning-Based Image Reconstruction in Patients With Suspected Focal Epilepsy.
    Suh PS; Park JE; Roh YH; Kim S; Jung M; Koo YS; Lee SA; Choi Y; Kim HS
    Korean J Radiol; 2024 Apr; 25(4):374-383. PubMed ID: 38528695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-High-Resolution T2-Weighted PROPELLER MRI of the Rectum With Deep Learning Reconstruction: Assessment of Image Quality and Diagnostic Performance.
    Matsumoto S; Tsuboyama T; Onishi H; Fukui H; Honda T; Wakayama T; Wang X; Matsui T; Nakamoto A; Ota T; Kiso K; Osawa K; Tomiyama N
    Invest Radiol; 2024 Jul; 59(7):479-488. PubMed ID: 37975732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast T2-Weighted Imaging With Deep Learning-Based Reconstruction: Evaluation of Image Quality and Diagnostic Performance in Patients Undergoing Radical Prostatectomy.
    Park JC; Park KJ; Park MY; Kim MH; Kim JK
    J Magn Reson Imaging; 2022 Jun; 55(6):1735-1744. PubMed ID: 34773449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thin-Slice Pituitary MRI with Deep Learning-based Reconstruction: Diagnostic Performance in a Postoperative Setting.
    Kim M; Kim HS; Kim HJ; Park JE; Park SY; Kim YH; Kim SJ; Lee J; Lebel MR
    Radiology; 2021 Jan; 298(1):114-122. PubMed ID: 33141001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. T2 hyperintense signal in patients with temporal lobe epilepsy with MRI signs of hippocampal sclerosis and in patients with temporal lobe epilepsy with normal MRI.
    Kubota BY; Coan AC; Yasuda CL; Cendes F
    Epilepsy Behav; 2015 May; 46():103-8. PubMed ID: 25936278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Usefulness of pituitary high-resolution 3D MRI with deep-learning-based reconstruction for perioperative evaluation of pituitary adenomas.
    Ishimoto Y; Ide S; Watanabe K; Oyu K; Kasai S; Umemura Y; Sasaki M; Nagaya H; Tatsuo S; Nozaki A; Ikushima Y; Wakayama T; Asano K; Saito A; Tomiyama M; Kakeda S
    Neuroradiology; 2024 Jun; 66(6):937-945. PubMed ID: 38374411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning-based reconstruction can improve canine thoracolumbar magnetic resonance image quality and reduce slice thickness.
    Kang H; Noh D; Lee SK; Choi S; Lee K
    Vet Radiol Ultrasound; 2023 Nov; 64(6):1063-1070. PubMed ID: 37667979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated subfield volumetric analysis of hippocampus in temporal lobe epilepsy using high-resolution T2-weighed MR imaging.
    Sone D; Sato N; Maikusa N; Ota M; Sumida K; Yokoyama K; Kimura Y; Imabayashi E; Watanabe Y; Watanabe M; Okazaki M; Onuma T; Matsuda H
    Neuroimage Clin; 2016; 12():57-64. PubMed ID: 27489767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image Quality and Diagnostic Performance of Accelerated Shoulder MRI With Deep Learning-Based Reconstruction.
    Hahn S; Yi J; Lee HJ; Lee Y; Lim YJ; Bang JY; Kim H; Lee J
    AJR Am J Roentgenol; 2022 Mar; 218(3):506-516. PubMed ID: 34523950
    [No Abstract]   [Full Text] [Related]  

  • 10. Deep learning denoising reconstruction enables faster T2-weighted FLAIR sequence acquisition with satisfactory image quality.
    Brain ME; Amukotuwa S; Bammer R
    J Med Imaging Radiat Oncol; 2024 Jun; 68(4):377-384. PubMed ID: 38577926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bladder MRI with deep learning-based reconstruction: a prospective evaluation of muscle invasiveness using VI-RADS.
    Zhang X; Wang Y; Xu X; Zhang J; Sun Y; Hu M; Wang S; Li Y; Chen Y; Zhao X
    Abdom Radiol (NY); 2024 May; 49(5):1615-1625. PubMed ID: 38652125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Deep learning reconstruction algorithm for coronary CT angiography in assessing obstructive coronary artery disease caused by calcified lesions: the clinical application value].
    Xu C; Yi Y; Li YY; Guo YB; Jin ZY; Wang YN
    Zhonghua Yi Xue Za Zhi; 2021 Oct; 101(39):3202-3207. PubMed ID: 34689531
    [No Abstract]   [Full Text] [Related]  

  • 13. Deep learning-based reconstruction and 3D hybrid profile order technique for MRCP at 3T: evaluation of image quality and acquisition time.
    Shiraishi K; Nakaura T; Uetani H; Nagayama Y; Kidoh M; Kobayashi N; Morita K; Yamahita Y; Tanaka Y; Baba H; Hirai T
    Eur Radiol; 2023 Nov; 33(11):7585-7594. PubMed ID: 37178197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thin-slice Two-dimensional T2-weighted Imaging with Deep Learning-based Reconstruction: Improved Lesion Detection in the Brain of Patients with Multiple Sclerosis.
    Iwamura M; Ide S; Sato K; Kakuta A; Tatsuo S; Nozaki A; Wakayama T; Ueno T; Haga R; Kakizaki M; Yokoyama Y; Yamauchi R; Tsushima F; Shibutani K; Tomiyama M; Kakeda S
    Magn Reson Med Sci; 2024 Apr; 23(2):184-192. PubMed ID: 36927877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utility of accelerated T2-weighted turbo spin-echo imaging with deep learning reconstruction in female pelvic MRI: a multi-reader study.
    Lee EJ; Hwang J; Park S; Bae SH; Lim J; Chang YW; Hong SS; Oh E; Nam BD; Jeong J; Sung JK; Nickel D
    Eur Radiol; 2023 Nov; 33(11):7697-7706. PubMed ID: 37314472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thin-slice elbow MRI with deep learning reconstruction: Superior diagnostic performance of elbow ligament pathologies.
    Yi J; Hahn S; Lee HJ; Lee Y; Bang JY; Kim Y; Lee J
    Eur J Radiol; 2024 Jun; 175():111471. PubMed ID: 38636411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resting-state functional MRI distinguishes temporal lobe epilepsy subtypes.
    Reyes A; Thesen T; Wang X; Hahn D; Yoo D; Kuzniecky R; Devinsky O; Blackmon K
    Epilepsia; 2016 Sep; 57(9):1475-84. PubMed ID: 27374869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MR imaging for shoulder diseases: Effect of compressed sensing and deep learning reconstruction on examination time and imaging quality compared with that of parallel imaging.
    Obama Y; Ohno Y; Yamamoto K; Ikedo M; Yui M; Hanamatsu S; Ueda T; Ikeda H; Murayama K; Toyama H
    Magn Reson Imaging; 2022 Dec; 94():56-63. PubMed ID: 35934207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of deep learning-based reconstruction on T2-weighted and diffusion-weighted prostate MRI image quality.
    Lee KL; Kessler DA; Dezonie S; Chishaya W; Shepherd C; Carmo B; Graves MJ; Barrett T
    Eur J Radiol; 2023 Sep; 166():111017. PubMed ID: 37541181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast high-quality MRI protocol of the lumbar spine with deep learning-based algorithm: an image quality and scanning time comparison with standard protocol.
    Zerunian M; Pucciarelli F; Caruso D; De Santis D; Polici M; Masci B; Nacci I; Del Gaudio A; Argento G; Redler A; Laghi A
    Skeletal Radiol; 2024 Jan; 53(1):151-159. PubMed ID: 37369725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.