These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 38528717)

  • 1. Utilizing machine learning for predicting heart failure outcomes: A path toward developing a patient-centered approach.
    Nabi R; Zahid T; Farooqi HA
    Clin Cardiol; 2024 Mar; 47(3):e24260. PubMed ID: 38528717
    [No Abstract]   [Full Text] [Related]  

  • 2. Machine learning in heart failure: ready for prime time.
    Awan SE; Sohel F; Sanfilippo FM; Bennamoun M; Dwivedi G
    Curr Opin Cardiol; 2018 Mar; 33(2):190-195. PubMed ID: 29194052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilizing Conversational Artificial Intelligence, Voice, and Phonocardiography Analytics in Heart Failure Care.
    Nahar JK; Lopez-Jimenez F
    Heart Fail Clin; 2022 Apr; 18(2):311-323. PubMed ID: 35341543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reply: Titration of Guideline-Directed Medical Therapy Improves Patient-Centered Outcomes in Heart Failure With Reduced Ejection Fraction.
    Greene SJ; Fonarow GC; Butler J
    J Am Coll Cardiol; 2019 Sep; 74(10):1426-1427. PubMed ID: 31488284
    [No Abstract]   [Full Text] [Related]  

  • 5. [Heart failure. A medical challenge].
    Hasenfuß G
    Internist (Berl); 2014 Jun; 55(6):645-6. PubMed ID: 24811342
    [No Abstract]   [Full Text] [Related]  

  • 6. Machine Learning for Predicting Intubations in Heart Failure Patients: the Challenge of the Right Approach.
    Ghanta SN; Gautam N; Mehta JL; Al'Aref SJ
    Cardiovasc Drugs Ther; 2024 Apr; 38(2):211-214. PubMed ID: 36593325
    [No Abstract]   [Full Text] [Related]  

  • 7. Unleashing the Power of Machine Learning to Predict Myocardial Recovery After Left Ventricular Assist Device: A Call for the Inclusion of Unstructured Data Sources in Heart Failure Registries.
    Wehbe RM
    Circ Heart Fail; 2022 Jan; 15(1):e009278. PubMed ID: 34949097
    [No Abstract]   [Full Text] [Related]  

  • 8. Left Atrial Reservoir Strain and Machine Learning: Augmenting Clinical Care in Heart Failure Patients.
    Sannino A; Delgado V
    Circ Cardiovasc Imaging; 2023 Feb; 16(2):e015154. PubMed ID: 36752110
    [No Abstract]   [Full Text] [Related]  

  • 9. Phenomapping Heart Failure with Preserved Ejection Fraction Using Machine Learning Cluster Analysis: Prognostic and Therapeutic Implications.
    Galli E; Bourg C; Kosmala W; Oger E; Donal E
    Heart Fail Clin; 2021 Jul; 17(3):499-518. PubMed ID: 34051979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Price of Explainability in Machine Learning Models for 100-Day Readmission Prediction in Heart Failure: Retrospective, Comparative, Machine Learning Study.
    Soliman A; Agvall B; Etminani K; Hamed O; Lingman M
    J Med Internet Res; 2023 Oct; 25():e46934. PubMed ID: 37889530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the care of patients dying of heart failure.
    Albert NM; Davis M; Young J
    Cleve Clin J Med; 2002 Apr; 69(4):321-8. PubMed ID: 11996202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical applications of machine learning in the diagnosis, classification, and prediction of heart failure.
    Olsen CR; Mentz RJ; Anstrom KJ; Page D; Patel PA
    Am Heart J; 2020 Nov; 229():1-17. PubMed ID: 32905873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A patient-centred, comprehensive model for the care for heart failure: the 360° heart failure centre.
    Halatchev IG; McDonald JR; Wu WC
    Open Heart; 2020 Jul; 7(2):. PubMed ID: 32624480
    [No Abstract]   [Full Text] [Related]  

  • 14. Analysis of Machine Learning Techniques for Heart Failure Readmissions.
    Mortazavi BJ; Downing NS; Bucholz EM; Dharmarajan K; Manhapra A; Li SX; Negahban SN; Krumholz HM
    Circ Cardiovasc Qual Outcomes; 2016 Nov; 9(6):629-640. PubMed ID: 28263938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What Is Known About the Benefits of Patient-Centered Care in Patients with Heart Failure.
    Ulin K; Malm D; Nygårdh A
    Curr Heart Fail Rep; 2015 Dec; 12(6):350-9. PubMed ID: 26497193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy.
    Cikes M; Sanchez-Martinez S; Claggett B; Duchateau N; Piella G; Butakoff C; Pouleur AC; Knappe D; Biering-Sørensen T; Kutyifa V; Moss A; Stein K; Solomon SD; Bijnens B
    Eur J Heart Fail; 2019 Jan; 21(1):74-85. PubMed ID: 30328654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heartbeat: can machine learning improve outcomes in patients with heart failure with preserved ejection fraction?
    Otto CM
    Heart; 2020 Mar; 106(5):315-317. PubMed ID: 32054663
    [No Abstract]   [Full Text] [Related]  

  • 18. Score and Correlation Coefficient-Based Feature Selection for Predicting Heart Failure Diagnosis by Using Machine Learning Algorithms.
    Senan EM; Abunadi I; Jadhav ME; Fati SM
    Comput Math Methods Med; 2021; 2021():8500314. PubMed ID: 34966445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of smart sensors coupled with Internet of Things and Artificial Intelligence approach for heart failure monitoring.
    Maurya MR; Riyaz NUSS; Reddy MSB; Yalcin HC; Ouakad HM; Bahadur I; Al-Maadeed S; Sadasivuni KK
    Med Biol Eng Comput; 2021 Nov; 59(11-12):2185-2203. PubMed ID: 34611787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New Multiparametric Analysis of Cardiac Dyssynchrony: Machine Learning and Prediction of Response to CRT.
    Donal E; Hubert A; Le Rolle V; Leclercq C; Martins R; Mabo P; Galli E; Hernandez A
    JACC Cardiovasc Imaging; 2019 Sep; 12(9):1887-1888. PubMed ID: 31005538
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.