These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 38528717)
21. Towards Improved Patient-Centered Communication in High-Stakes Heart Failure Decisions: the "Best Case/Worst Case" Framework. Chuzi S; Tong W; Nakagawa S J Card Fail; 2023 Nov; 29(11):1561-1563. PubMed ID: 37343815 [No Abstract] [Full Text] [Related]
22. Enhancing heart failure treatment decisions: interpretable machine learning models for advanced therapy eligibility prediction using EHR data. Zhang Y; Golbus JR; Wittrup E; Aaronson KD; Najarian K BMC Med Inform Decis Mak; 2024 Feb; 24(1):53. PubMed ID: 38355512 [TBL] [Abstract][Full Text] [Related]
23. Dose Titration of Ambulatory Care for Heart Failure: A New Paradigm to Keep Patients Healthy at Home Rather Than Healing in Hospital. Oliveira GH; Al-Kindi SG; Pronovost PJ Circ Cardiovasc Qual Outcomes; 2019 Dec; 12(12):e005952. PubMed ID: 32522025 [No Abstract] [Full Text] [Related]
24. Predicting 30-Day Readmissions in Patients With Heart Failure Using Administrative Data: A Machine Learning Approach. Sharma V; Kulkarni V; McAlister F; Eurich D; Keshwani S; Simpson SH; Voaklander D; Samanani S J Card Fail; 2022 May; 28(5):710-722. PubMed ID: 34936894 [TBL] [Abstract][Full Text] [Related]
25. A Machine Learning Approach to Management of Heart Failure Populations. Jing L; Ulloa Cerna AE; Good CW; Sauers NM; Schneider G; Hartzel DN; Leader JB; Kirchner HL; Hu Y; Riviello DM; Stough JV; Gazes S; Haggerty A; Raghunath S; Carry BJ; Haggerty CM; Fornwalt BK JACC Heart Fail; 2020 Jul; 8(7):578-587. PubMed ID: 32387064 [TBL] [Abstract][Full Text] [Related]
26. Machine Learning Algorithm Predicts Cardiac Resynchronization Therapy Outcomes: Lessons From the COMPANION Trial. Kalscheur MM; Kipp RT; Tattersall MC; Mei C; Buhr KA; DeMets DL; Field ME; Eckhardt LL; Page CD Circ Arrhythm Electrophysiol; 2018 Jan; 11(1):e005499. PubMed ID: 29326129 [TBL] [Abstract][Full Text] [Related]
27. Improving risk prediction in heart failure using machine learning. Adler ED; Voors AA; Klein L; Macheret F; Braun OO; Urey MA; Zhu W; Sama I; Tadel M; Campagnari C; Greenberg B; Yagil A Eur J Heart Fail; 2020 Jan; 22(1):139-147. PubMed ID: 31721391 [TBL] [Abstract][Full Text] [Related]
28. A Machine Learning Methodology for Identification and Triage of Heart Failure Exacerbations. Morrill J; Qirko K; Kelly J; Ambrosy A; Toro B; Smith T; Wysham N; Fudim M; Swaminathan S J Cardiovasc Transl Res; 2022 Feb; 15(1):103-115. PubMed ID: 34453676 [TBL] [Abstract][Full Text] [Related]
29. Predicting the risk of mortality and rehospitalization in heart failure patients: A retrospective cohort study by machine learning approach. Ketabi M; Andishgar A; Fereidouni Z; Sani MM; Abdollahi A; Vali M; Alkamel A; Tabrizi R Clin Cardiol; 2024 Feb; 47(2):e24239. PubMed ID: 38402566 [TBL] [Abstract][Full Text] [Related]
30. Using machine learning to characterize heart failure across the scales. Peirlinck M; Sahli Costabal F; Sack KL; Choy JS; Kassab GS; Guccione JM; De Beule M; Segers P; Kuhl E Biomech Model Mechanobiol; 2019 Dec; 18(6):1987-2001. PubMed ID: 31240511 [TBL] [Abstract][Full Text] [Related]
31. Cautious optimism for machine learning techniques for prediction of heart failure outcomes. Fine NM; Howlett JG Eur J Heart Fail; 2021 Jun; 23(6):1000-1001. PubMed ID: 33880848 [No Abstract] [Full Text] [Related]
32. Machine Learning-Based Model for Predicting Prolonged Mechanical Ventilation in Patients with Congestive Heart Failure. Li L; Tu B; Xiong Y; Hu Z; Zhang Z; Liu S; Yao Y Cardiovasc Drugs Ther; 2024 Apr; 38(2):359-369. PubMed ID: 36383267 [TBL] [Abstract][Full Text] [Related]
33. Predicting 90 day acute heart failure readmission and death using machine learning-supported decision analysis. Sarijaloo F; Park J; Zhong X; Wokhlu A Clin Cardiol; 2021 Feb; 44(2):230-237. PubMed ID: 33355945 [TBL] [Abstract][Full Text] [Related]
34. Predicting Risk of 30-Day Readmissions Using Two Emerging Machine Learning Methods. Mahajan SM; Mahajan AS; King R; Negahban S Stud Health Technol Inform; 2018; 250():250-255. PubMed ID: 29857454 [TBL] [Abstract][Full Text] [Related]
35. Promises and challenges of machine learning for device therapy in heart failure. Gautam N; Mounsey JP; Yeh ETH; Al'Aref SJ Eur Heart J; 2023 May; 44(18):1583-1585. PubMed ID: 36806933 [No Abstract] [Full Text] [Related]
36. Machine learning: at the heart of failure diagnosis. Sanders WE; Burton T; Khosousi A; Ramchandani S Curr Opin Cardiol; 2021 Mar; 36(2):227-233. PubMed ID: 33443957 [TBL] [Abstract][Full Text] [Related]
37. Machine learning-based prediction of heart failure readmission or death: implications of choosing the right model and the right metrics. Awan SE; Bennamoun M; Sohel F; Sanfilippo FM; Dwivedi G ESC Heart Fail; 2019 Apr; 6(2):428-435. PubMed ID: 30810291 [TBL] [Abstract][Full Text] [Related]
39. 2020 ACC/AHA Clinical Performance and Quality Measures for Adults With Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Performance Measures. Heidenreich PA; Fonarow GC; Breathett K; Jurgens CY; Pisani BA; Pozehl BJ; Spertus JA; Taylor KG; Thibodeau JT; Yancy CW; Ziaeian B Circ Cardiovasc Qual Outcomes; 2020 Nov; 13(11):e000099. PubMed ID: 33136435 [No Abstract] [Full Text] [Related]