These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38528914)

  • 1. Corrigendum: Chromatin structure and context-dependent sequence features control prime editing efficiency.
    Kim S; Yuan JB; Woods WS; Newton DA; Perez-Pinera P; Song JS
    Front Genet; 2024; 15():1391923. PubMed ID: 38528914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatin structure and context-dependent sequence features control prime editing efficiency.
    Kim S; Yuan JB; Woods WS; Newton DA; Perez-Pinera P; Song JS
    Front Genet; 2023; 14():1222112. PubMed ID: 37456665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatin structure and context-dependent sequence features control prime editing efficiency.
    Kim S; Yuan JB; Woods WS; Newton DA; Perez-Pinera P; Song JS
    bioRxiv; 2023 Apr; ():. PubMed ID: 37162994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corrigendum: Enhancement of Precise Gene Editing by the Association of Cas9 With Homologous Recombination Factors.
    Tran NT; Bashir S; Li X; Rossius J; Chu VT; Rajewsky K; Kühn R
    Front Genet; 2020; 11():326. PubMed ID: 32362909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive computational analysis of epigenetic descriptors affecting CRISPR-Cas9 off-target activity.
    Mak JK; Störtz F; Minary P
    BMC Genomics; 2022 Dec; 23(1):805. PubMed ID: 36474180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin accessibility and guide sequence secondary structure affect CRISPR-Cas9 gene editing efficiency.
    Jensen KT; Fløe L; Petersen TS; Huang J; Xu F; Bolund L; Luo Y; Lin L
    FEBS Lett; 2017 Jul; 591(13):1892-1901. PubMed ID: 28580607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using local chromatin structure to improve CRISPR/Cas9 efficiency in zebrafish.
    Chen Y; Zeng S; Hu R; Wang X; Huang W; Liu J; Wang L; Liu G; Cao Y; Zhang Y
    PLoS One; 2017; 12(8):e0182528. PubMed ID: 28800611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterochromatin delays CRISPR-Cas9 mutagenesis but does not influence the outcome of mutagenic DNA repair.
    Kallimasioti-Pazi EM; Thelakkad Chathoth K; Taylor GC; Meynert A; Ballinger T; Kelder MJE; Lalevée S; Sanli I; Feil R; Wood AJ
    PLoS Biol; 2018 Dec; 16(12):e2005595. PubMed ID: 30540740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Challenges in Gene Therapy for Somatic Reverted Mosaicism in X-Linked Combined Immunodeficiency by CRISPR/Cas9 and Prime Editing.
    Hou Y; Ureña-Bailén G; Mohammadian Gol T; Gratz PG; Gratz HP; Roig-Merino A; Antony JS; Lamsfus-Calle A; Daniel-Moreno A; Handgretinger R; Mezger M
    Genes (Basel); 2022 Dec; 13(12):. PubMed ID: 36553615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleosome breathing and remodeling constrain CRISPR-Cas9 function.
    Isaac RS; Jiang F; Doudna JA; Lim WA; Narlikar GJ; Almeida R
    Elife; 2016 Apr; 5():. PubMed ID: 27130520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TALEN outperforms Cas9 in editing heterochromatin target sites.
    Jain S; Shukla S; Yang C; Zhang M; Fatma Z; Lingamaneni M; Abesteh S; Lane ST; Xiong X; Wang Y; Schroeder CM; Selvin PR; Zhao H
    Nat Commun; 2021 Jan; 12(1):606. PubMed ID: 33504770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Easy-Prime: a machine learning-based prime editor design tool.
    Li Y; Chen J; Tsai SQ; Cheng Y
    Genome Biol; 2021 Aug; 22(1):235. PubMed ID: 34412673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting prime editing efficiency and product purity by deep learning.
    Mathis N; Allam A; Kissling L; Marquart KF; Schmidheini L; Solari C; Balázs Z; Krauthammer M; Schwank G
    Nat Biotechnol; 2023 Aug; 41(8):1151-1159. PubMed ID: 36646933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DeepCRISTL: deep transfer learning to predict CRISPR/Cas9 functional and endogenous on-target editing efficiency.
    Elkayam S; Orenstein Y
    Bioinformatics; 2022 Jun; 38(Suppl 1):i161-i168. PubMed ID: 35758815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HDAC inhibitors improve CRISPR-Cas9 mediated prime editing and base editing.
    Liu N; Zhou L; Lin G; Hu Y; Jiao Y; Wang Y; Liu J; Yang S; Yao S
    Mol Ther Nucleic Acids; 2022 Sep; 29():36-46. PubMed ID: 35784015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bi-PE: bi-directional priming improves CRISPR/Cas9 prime editing in mammalian cells.
    Tao R; Wang Y; Jiao Y; Hu Y; Li L; Jiang L; Zhou L; Qu J; Chen Q; Yao S
    Nucleic Acids Res; 2022 Jun; 50(11):6423-6434. PubMed ID: 35687127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing CRISPR/Cas9 Editing of Repetitive Single Nucleotide Variants.
    Usher I; Ligammari L; Ahrabi S; Hepburn E; Connolly C; Bond GL; Flanagan AM; Cottone L
    Front Genome Ed; 2022; 4():932434. PubMed ID: 35865001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expansion of the prime editing modality with Cas9 from Francisella novicida.
    Oh Y; Lee WJ; Hur JK; Song WJ; Lee Y; Kim H; Gwon LW; Kim YH; Park YH; Kim CH; Lim KS; Song BS; Huh JW; Kim SU; Jun BH; Jung C; Lee SH
    Genome Biol; 2022 Apr; 23(1):92. PubMed ID: 35410288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Introduction of mutations in plants with prime editing.
    Hao L; Pu X; Song J
    Methods; 2021 Oct; 194():83-93. PubMed ID: 33774158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning-based prediction models to guide the selection of Cas9 variants for efficient gene editing.
    Li J; Wu P; Cao Z; Huang G; Lu Z; Yan J; Zhang H; Zhou Y; Liu R; Chen H; Ma L; Luo M
    Cell Rep; 2024 Feb; 43(2):113765. PubMed ID: 38358884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.