BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 38529060)

  • 41. Phosphorylation systems in symbiotic nitrogen-fixing bacteria and their role in bacterial adaptation to various environmental stresses.
    Lipa P; Janczarek M
    PeerJ; 2020; 8():e8466. PubMed ID: 32095335
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nonnodulating Bradyrhizobium spp. Modulate the Benefits of Legume-Rhizobium Mutualism.
    Gano-Cohen KA; Stokes PJ; Blanton MA; Wendlandt CE; Hollowell AC; Regus JU; Kim D; Patel S; Pahua VJ; Sachs JL
    Appl Environ Microbiol; 2016 Sep; 82(17):5259-68. PubMed ID: 27316960
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Loss-of-function of ASPARTIC PEPTIDASE NODULE-INDUCED 1 (APN1) in Lotus japonicus restricts efficient nitrogen-fixing symbiosis with specific Mesorhizobium loti strains.
    Yamaya-Ito H; Shimoda Y; Hakoyama T; Sato S; Kaneko T; Hossain MS; Shibata S; Kawaguchi M; Hayashi M; Kouchi H; Umehara Y
    Plant J; 2018 Jan; 93(1):5-16. PubMed ID: 29086445
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanisms underlying legume-rhizobium symbioses.
    Yang J; Lan L; Jin Y; Yu N; Wang D; Wang E
    J Integr Plant Biol; 2022 Feb; 64(2):244-267. PubMed ID: 34962095
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Small-peptide signals that control root nodule number, development, and symbiosis.
    Djordjevic MA; Mohd-Radzman NA; Imin N
    J Exp Bot; 2015 Aug; 66(17):5171-81. PubMed ID: 26249310
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evolutionary dynamics of nitrogen fixation in the legume-rhizobia symbiosis.
    Fujita H; Aoki S; Kawaguchi M
    PLoS One; 2014; 9(4):e93670. PubMed ID: 24691447
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nitrate reductases and hemoglobins control nitrogen-fixing symbiosis by regulating nitric oxide accumulation.
    Berger A; Boscari A; Puppo A; Brouquisse R
    J Exp Bot; 2021 Feb; 72(3):873-884. PubMed ID: 32877919
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Signals and Responses: Choreographing the Complex Interaction between Legumes and alpha- and beta-Rhizobia.
    Lee A; Hirsch AM
    Plant Signal Behav; 2006 Jul; 1(4):161-8. PubMed ID: 19521481
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nitric oxide signaling, metabolism and toxicity in nitrogen-fixing symbiosis.
    Berger A; Boscari A; Frendo P; Brouquisse R
    J Exp Bot; 2019 Aug; 70(17):4505-4520. PubMed ID: 30968126
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Distribution, Characterization and the Commercialization of Elite Rhizobia Strains in Africa.
    Wekesa C; Jalloh AA; Muoma JO; Korir H; Omenge KM; Maingi JM; Furch ACU; Oelmüller R
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743041
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanisms in plant growth-promoting rhizobacteria that enhance legume-rhizobial symbioses.
    Alemneh AA; Zhou Y; Ryder MH; Denton MD
    J Appl Microbiol; 2020 Nov; 129(5):1133-1156. PubMed ID: 32592603
    [TBL] [Abstract][Full Text] [Related]  

  • 52. GmVTL1a is an iron transporter on the symbiosome membrane of soybean with an important role in nitrogen fixation.
    Brear EM; Bedon F; Gavrin A; Kryvoruchko IS; Torres-Jerez I; Udvardi MK; Day DA; Smith PMC
    New Phytol; 2020 Oct; 228(2):667-681. PubMed ID: 32533710
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Why are most rhizobia beneficial to their plant hosts, rather than parasitic?
    Denison RF; Toby Kiers E
    Microbes Infect; 2004 Nov; 6(13):1235-9. PubMed ID: 15488744
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes?
    Masson-Boivin C; Giraud E; Perret X; Batut J
    Trends Microbiol; 2009 Oct; 17(10):458-66. PubMed ID: 19766492
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phylogenomics reveals the evolution of root nodulating alpha- and beta-Proteobacteria (rhizobia).
    Rahimlou S; Bahram M; Tedersoo L
    Microbiol Res; 2021 Sep; 250():126788. PubMed ID: 34051611
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rhizobial infection of 4C cells triggers their endoreduplication during symbiotic nodule development in soybean.
    Fan W; Xia C; Wang S; Liu J; Deng L; Sun S; Wang X
    New Phytol; 2022 May; 234(3):1018-1030. PubMed ID: 35175637
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification and evolution of nsLTPs in the root nodule nitrogen fixation clade and molecular response of Frankia to AgLTP24.
    Gasser M; Keller J; Fournier P; Pujic P; Normand P; Boubakri H
    Sci Rep; 2023 Sep; 13(1):16020. PubMed ID: 37749152
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Secretion systems and signal exchange between nitrogen-fixing rhizobia and legumes.
    Nelson MS; Sadowsky MJ
    Front Plant Sci; 2015; 6():491. PubMed ID: 26191069
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Split-root assays for studying legume-rhizobia symbioses, rhizodeposition, and belowground nitrogen transfer in legumes.
    Thilakarathna MS; Cope KR
    J Exp Bot; 2021 Jul; 72(15):5285-5299. PubMed ID: 33954584
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Type III effector provides a novel symbiotic pathway in legume-rhizobia symbiosis.
    Ratu STN; Amelia L; Okazaki S
    Biosci Biotechnol Biochem; 2022 Dec; 87(1):28-37. PubMed ID: 36367542
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.