BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 38529268)

  • 1. Individual and group-level optimization of electric field in deep brain region during multichannel transcranial electrical stimulation.
    Nishimoto H; Kodera S; Otsuru N; Hirata A
    Front Neurosci; 2024; 18():1332135. PubMed ID: 38529268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How structural and functional MRI can inform dual-site tACS parameters: A case study in a clinical population and its pragmatic implications.
    Soleimani G; Kupliki R; Bodurka J; Paulus MP; Ekhtiari H
    Brain Stimul; 2022; 15(2):337-351. PubMed ID: 35042056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are we really targeting and stimulating DLPFC by placing transcranial electrical stimulation (tES) electrodes over F3/F4?
    Soleimani G; Kuplicki R; Camchong J; Opitz A; Paulus MP; Lim KO; Ekhtiari H
    Hum Brain Mapp; 2023 Dec; 44(17):6275-6287. PubMed ID: 37750607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcranial Electrical Stimulation generates electric fields in deep human brain structures.
    Louviot S; Tyvaert L; Maillard LG; Colnat-Coulbois S; Dmochowski J; Koessler L
    Brain Stimul; 2022; 15(1):1-12. PubMed ID: 34742994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of transcranial stimulating electrode montages over the head for lower-extremity transcranial motor evoked potential monitoring.
    Tomio R; Akiyama T; Ohira T; Yoshida K
    J Neurosurg; 2017 Jun; 126(6):1951-1958. PubMed ID: 27662531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significant group-level hotspots found in deep brain regions during transcranial direct current stimulation (tDCS): A computational analysis of electric fields.
    Gomez-Tames J; Asai A; Hirata A
    Clin Neurophysiol; 2020 Mar; 131(3):755-765. PubMed ID: 31839398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution computational modeling of the current flow in the outer ear during transcutaneous auricular Vagus Nerve Stimulation (taVNS).
    Kreisberg E; Esmaeilpour Z; Adair D; Khadka N; Datta A; Badran BW; Bremner JD; Bikson M
    Brain Stimul; 2021; 14(6):1419-1430. PubMed ID: 34517143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing the electric field strength in multiple targets for multichannel transcranial electric stimulation.
    Saturnino GB; Madsen KH; Thielscher A
    J Neural Eng; 2021 Feb; 18(1):. PubMed ID: 33181504
    [No Abstract]   [Full Text] [Related]  

  • 9. Key factors in the cortical response to transcranial electrical Stimulations-A multi-scale modeling study.
    Chung H; Im C; Seo H; Jun SC
    Comput Biol Med; 2022 May; 144():105328. PubMed ID: 35231800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inter-individual and age-dependent variability in simulated electric fields induced by conventional transcranial electrical stimulation.
    Antonenko D; Grittner U; Saturnino G; Nierhaus T; Thielscher A; Flöel A
    Neuroimage; 2021 Jan; 224():117413. PubMed ID: 33011418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of Computational Modeling to Inform tDCS Electrode Montages for the Promotion of Language Recovery in Post-stroke Aphasia.
    Galletta EE; Cancelli A; Cottone C; Simonelli I; Tecchio F; Bikson M; Marangolo P
    Brain Stimul; 2015; 8(6):1108-15. PubMed ID: 26198364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple method for EEG guided transcranial electrical stimulation without models.
    Cancelli A; Cottone C; Tecchio F; Truong DQ; Dmochowski J; Bikson M
    J Neural Eng; 2016 Jun; 13(3):036022. PubMed ID: 27172063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-invasive stimulation with temporal interference: optimization of the electric field deep in the brain with the use of a genetic algorithm.
    Stoupis D; Samaras T
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 35970146
    [No Abstract]   [Full Text] [Related]  

  • 14. Electric field envelope focality in superficial brain areas with linear alignment montage in temporal interference stimulation.
    Hirata A; Akazawa Y; Kodera S; Otsuru N; Laakso I
    Comput Biol Med; 2024 Jun; 178():108697. PubMed ID: 38850958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The electric field distributions in anatomical head models during transcranial direct current stimulation for post-stroke rehabilitation.
    Manoli Z; Parazzini M; Ravazzani P; Samaras T
    Med Phys; 2017 Jan; 44(1):262-271. PubMed ID: 28044315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel technique for accurate electrode placement over cortical targets for transcranial electrical stimulation (tES) clinical trials.
    Jog M; Anderson C; Kim E; Garrett A; Kubicki A; Gonzalez S; Jann K; Iacoboni M; Woods R; Wang DJ; Narr KL
    J Neural Eng; 2021 Oct; 18(5):. PubMed ID: 34555822
    [No Abstract]   [Full Text] [Related]  

  • 17. Accessibility of cortical regions to focal TES: Dependence on spatial position, safety, and practical constraints.
    Saturnino GB; Siebner HR; Thielscher A; Madsen KH
    Neuroimage; 2019 Dec; 203():116183. PubMed ID: 31525498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of optimal injection current pattern for multichannel transcranial electrical stimulation without individual MRI using multiple head models.
    Lee S; Park J; Lee C; Ahn J; Ryu J; Lee SH; Im CH
    Comput Methods Programs Biomed; 2024 Jan; 243():107878. PubMed ID: 37890288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Population-level insights into temporal interference for focused deep brain neuromodulation.
    Yatsuda K; Yu W; Gomez-Tames J
    Front Hum Neurosci; 2024; 18():1308549. PubMed ID: 38708141
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.