BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 38529342)

  • 1. Propulsion Cost Changes of Ultra-Lightweight Manual Wheelchairs After One Year of Simulated Use.
    Misch J; Sprigle S
    ASME Open J Eng; 2022; 1(1):. PubMed ID: 38529342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of wheels and tires on high-strength lightweight wheelchair propulsion cost using a robotic wheelchair tester.
    Misch J; Sprigle S
    Disabil Rehabil Assist Technol; 2023 Nov; 18(8):1393-1403. PubMed ID: 34958616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manual Wheelchair Configuration in Unilateral Upper- and Lower-Extremity Propulsion: A Randomized Crossover Study to Assess Effects of Rear Wheel Axle Position and Frame Type.
    Tefertiller C; Jones J; Sevigny M; Dahlin M
    Arch Phys Med Rehabil; 2023 Aug; 104(8):1188-1194. PubMed ID: 37024004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Wheels, Casters and Forks on Vibration Attenuation and Propulsion Cost of Manual Wheelchairs.
    Misch JP; Liu Y; Sprigle S
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2661-2670. PubMed ID: 36083953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of rolling resistance, propulsion technique and physiological demands between a rigid, folding and hybrid manual wheelchair frame.
    Braaksma J; Vegter RJK; Houdijk H; de Groot S
    Disabil Rehabil Assist Technol; 2024 Jun; ():1-10. PubMed ID: 38916055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Mass and Weight Distribution on Manual Wheelchair Propulsion Torque.
    Sprigle S; Huang M
    Assist Technol; 2015; 27(4):226-35; quiz 236-7. PubMed ID: 26691562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinematics and pushrim kinetics in adolescents propelling high-strength lightweight and ultra-lightweight manual wheelchairs.
    Oliveira N; Blochlinger S; Ehrenberg N; Defosse T; Forrest G; Dyson-Hudson T; Barrance P
    Disabil Rehabil Assist Technol; 2019 Apr; 14(3):209-216. PubMed ID: 29271676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manual wheelchair propulsion cost across different components and configurations during straight and turning maneuvers.
    Sprigle S; Huang M
    J Rehabil Assist Technol Eng; 2020; 7():2055668320907819. PubMed ID: 32292593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Incremental Changes to Frame Mass on Manual Wheelchair Propulsion Cost.
    Misch J; Sprigle S
    ASME Open J Eng; 2023; 2():. PubMed ID: 38529126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing the performance of ultralight folding manual wheelchairs using standardized tests.
    Gebrosky B; Bridge A; O'Donnell S; Grindle GG; Cooper R; Cooper RA
    Disabil Rehabil Assist Technol; 2022 Jan; 17(1):40-49. PubMed ID: 32338550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of wheelchair drag resistance using a coasting deceleration technique.
    Hoffman MD; Millet GY; Hoch AZ; Candau RB
    Am J Phys Med Rehabil; 2003 Nov; 82(11):880-9; quiz 890-2. PubMed ID: 14566157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hand-rim biomechanics during geared manual wheelchair propulsion over different ground conditions in individuals with spinal cord injury.
    Jahanian O; Gaglio A; Cho CC; Muqeet V; Smith R; Morrow MMB; Hsiao-Wecksler ET; Slavens BA
    J Biomech; 2022 Sep; 142():111235. PubMed ID: 35947887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of operator and wheelchair factors on wheelchair propulsion effort.
    Lin JT; Sprigle S
    Disabil Rehabil Assist Technol; 2020 Apr; 15(3):328-335. PubMed ID: 30810404
    [No Abstract]   [Full Text] [Related]  

  • 14. Modeling manual wheelchair propulsion cost during straight and curvilinear trajectories.
    Misch J; Huang M; Sprigle S
    PLoS One; 2020; 15(6):e0234742. PubMed ID: 32555594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of surface type, wheelchair weight, and axle position on wheelchair propulsion by novice older adults.
    Cowan RE; Nash MS; Collinger JL; Koontz AM; Boninger ML
    Arch Phys Med Rehabil; 2009 Jul; 90(7):1076-83. PubMed ID: 19577019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lightweight and ultralight wheelchairs: propulsion and preferences of two young children with spina bifida.
    Meiser MJ; McEwen IR
    Pediatr Phys Ther; 2007; 19(3):245-53. PubMed ID: 17700354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arm crank vs handrim wheelchair propulsion: metabolic and cardiopulmonary responses.
    Smith PA; Glaser RM; Petrofsky JS; Underwood PD; Smith GB; Richard JJ
    Arch Phys Med Rehabil; 1983 Jun; 64(6):249-54. PubMed ID: 6860094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatigue testing of selected suspension manual wheelchairs using ANSI/RESNA standards.
    Kwarciak AM; Cooper RA; Ammer WA; Fitzgerald SG; Boninger ML; Cooper R
    Arch Phys Med Rehabil; 2005 Jan; 86(1):123-9. PubMed ID: 15641002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glenohumeral joint dynamics and shoulder muscle activity during geared manual wheelchair propulsion on carpeted floor in individuals with spinal cord injury.
    Jahanian O; Schnorenberg AJ; Muqeet V; Hsiao-Wecksler ET; Slavens BA
    J Electromyogr Kinesiol; 2022 Feb; 62():102318. PubMed ID: 31178393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of varying level terrain on wheelchair propulsion biomechanics.
    Hurd WJ; Morrow MM; Kaufman KR; An KN
    Am J Phys Med Rehabil; 2008 Dec; 87(12):984-91. PubMed ID: 18824889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.