These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38529414)

  • 1. Sustainable Power Generation Through Solar-Driven Integration of Brayton and Transcritical CO
    Khan Y; Raman R; Said Z; Caliskan H; Hong H
    Glob Chall; 2024 Feb; 8(2):2300223. PubMed ID: 38529414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exergoeconomic and Thermodynamic Analyses of Solar Power Tower Based Novel Combined Helium Brayton Cycle-Transcritical CO
    Khan Y; Singh D; Caliskan H; Hong H
    Glob Chall; 2023 Dec; 7(12):2300191. PubMed ID: 38094864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of the energy, exergetic and thermo-economic performance of a novelty combined Brayton S-CO
    Gutierrez JC; Ochoa GV; Duarte-Forero J
    Heliyon; 2020 Jul; 6(7):e04459. PubMed ID: 32695919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proposal and Thermodynamic Assessment of S-CO
    Siddiqui ME; Almitani KH
    Entropy (Basel); 2020 Mar; 22(3):. PubMed ID: 33286079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy, exergy, and environmental assessment of a small-scale solar organic Rankine cycle using different organic fluids.
    Polanco Piñerez G; Valencia Ochoa G; Duarte-Forero J
    Heliyon; 2021 Sep; 7(9):e07947. PubMed ID: 34553085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative energy and exergy optimization of a supercritical-CO
    Valencia Ochoa G; Duarte Forero J; Rojas JP
    Heliyon; 2020 Jun; 6(6):e04136. PubMed ID: 32548328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy, Exergy, Exergoeconomic and Exergoenvironmental Impact Analyses and Optimization of Various Geothermal Power Cycle Configurations.
    Shamoushaki M; Aliehyaei M; Rosen MA
    Entropy (Basel); 2021 Nov; 23(11):. PubMed ID: 34828181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energetic and Exergetic Analysis of a Transcritical N
    Zhang Z; Hou Y; Kulacki FA
    Entropy (Basel); 2018 Jan; 20(1):. PubMed ID: 33265157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance Modulation of S-CO
    Xie L; Yang J
    Entropy (Basel); 2022 Oct; 24(11):. PubMed ID: 36359634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic and Economic Analysis of an Integrated Solar Combined Cycle System.
    Wang S; Fu Z; Sajid S; Zhang T; Zhang G
    Entropy (Basel); 2018 Apr; 20(5):. PubMed ID: 33265404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy, exergy and exergoenvironmental analyses of a sugarcane bagasse power cogeneration system.
    Cavalcanti EJC; Carvalho M; da Silva DRS
    Energy Convers Manag; 2020 Oct; 222():113232. PubMed ID: 32834299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exergetic optimization of simple and finned solar air collectors for humid subtropical regions.
    Maharana D; Bhattacharya T; Kotecha P; Anandalakshmi R
    Environ Sci Pollut Res Int; 2022 Aug; 29(37):56473-56489. PubMed ID: 35347619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic Investigation of an Integrated Solar Combined Cycle with an ORC System.
    Wang S; Fu Z
    Entropy (Basel); 2019 Apr; 21(4):. PubMed ID: 33267142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exergy-Based Analysis and Optimization of an Integrated Solar Combined-Cycle Power Plant.
    Elmorsy L; Morosuk T; Tsatsaronis G
    Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic, exergo-economic and exergo-environmental analysis of hybrid geothermal-solar power plant based on ORC cycle using emergy concept.
    Alibaba M; Pourdarbani R; Manesh MHK; Ochoa GV; Forero JD
    Heliyon; 2020 Apr; 6(4):e03758. PubMed ID: 32382674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of two newly suggested power, refrigeration, and hydrogen production, for moving towards sustainability schemes using improved solar-powered evolutionary algorithm optimization.
    Hai T; Abd El-Salam NM; Kh TI; Chaturvedi R; El-Shafai W; Farhang B
    Chemosphere; 2023 Sep; 336():139160. PubMed ID: 37327820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermoeconomic analysis of a combined supercritical CO
    Ochoa GV; Forero JD; Rojas JP
    Heliyon; 2022 Dec; 8(12):e12230. PubMed ID: 36582691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of conventional and exergetic life cycle assessments of organic Rankine cycle plants exploiting various low-temperature energy resources.
    Oyekale J; Emagbetere E
    Heliyon; 2022 Jul; 8(7):e09833. PubMed ID: 35815127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 4E Assessment of an Organic Rankine Cycle (ORC) Activated with Waste Heat of a Flash-Binary Geothermal Power Plant.
    Ambriz-Díaz VM; Rosas IY; Chávez O; Rubio-Maya C
    Entropy (Basel); 2022 Dec; 24(12):. PubMed ID: 36554237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy, exergy and economic (3E) analysis of flat-plate solar collector using novel environmental friendly nanofluid.
    Amar M; Akram N; Chaudhary GQ; Kazi SN; Soudagar MEM; Mubarak NM; Kalam MA
    Sci Rep; 2023 Jan; 13(1):411. PubMed ID: 36624198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.