These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38529581)

  • 1.
    Roberts CT; Beck SK; Prejean CM; Graul LM; Maitland DJ; Grunlan MA
    J Mater Chem B; 2024 Apr; 12(15):3694-3702. PubMed ID: 38529581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape memory polymer (SMP) scaffolds with improved self-fitting properties.
    Pfau MR; McKinzey KG; Roth AA; Graul LM; Maitland DJ; Grunlan MA
    J Mater Chem B; 2021 May; 9(18):3826-3837. PubMed ID: 33979417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape Memory Polymer Bioglass Composite Scaffolds Designed to Heal Complex Bone Defects.
    Nitschke BM; Butchko EA; Wahby MN; Breining KM; Konz AE; Grunlan MA
    ACS Biomater Sci Eng; 2024 Oct; 10(10):6509-6519. PubMed ID: 39364678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioactive Siloxane-Containing Shape-Memory Polymer (SMP) Scaffolds with Tunable Degradation Rates.
    Beltran FO; Houk CJ; Grunlan MA
    ACS Biomater Sci Eng; 2021 Apr; 7(4):1631-1639. PubMed ID: 33667062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polycaprolactone-based shape memory foams as self-fitting vaginal stents.
    Hicks AJ; Roberts C; Robinson A; Wilson K; Kotamreddy V; LaRue T; Veyssi A; Beltran F; Hakim J; Rausch MK; Grunlan M; Cosgriff-Hernandez E
    Acta Biomater; 2024 Oct; 187():172-182. PubMed ID: 39214160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic osteoinductivity of PCL-DA/PLLA semi-IPN shape memory polymer scaffolds.
    Arabiyat AS; Pfau MR; Grunlan MA; Hahn MS
    J Biomed Mater Res A; 2021 Nov; 109(11):2334-2345. PubMed ID: 33988292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inorganic-organic shape memory polymer (SMP) foams with highly tunable properties.
    Zhang D; Petersen KM; Grunlan MA
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):186-91. PubMed ID: 23227875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a self-fitting, shape memory polymer scaffold in a rabbit calvarial defect model.
    Pfau MR; Beltran FO; Woodard LN; Dobson LK; Gasson SB; Robbins AB; Lawson ZT; Brian Saunders W; Moreno MR; Grunlan MA
    Acta Biomater; 2021 Dec; 136():233-242. PubMed ID: 34571270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous inorganic-organic shape memory polymers.
    Zhang D; Burkes WL; Schoener CA; Grunlan MA
    Polymer (Guildf); 2012 Jun; 53(14):2935-2941. PubMed ID: 22956854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of a Bioactive, PCL-based "Self-fitting" Shape Memory Polymer Scaffold.
    Nail LN; Zhang D; Reinhard JL; Grunlan MA
    J Vis Exp; 2015 Oct; (105):e52981. PubMed ID: 26556112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triblock copolymers based on ε-caprolactone and trimethylene carbonate for the 3D printing of tissue engineering scaffolds.
    Güney A; Malda J; Dhert WJA; Grijpma DW
    Int J Artif Organs; 2017 May; 40(4):176-184. PubMed ID: 28165584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PCL-PLLA Semi-IPN Shape Memory Polymers (SMPs): Degradation and Mechanical Properties.
    Woodard LN; Page VM; Kmetz KT; Grunlan MA
    Macromol Rapid Commun; 2016 Dec; 37(23):1972-1977. PubMed ID: 27774684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous Poly(ε-caprolactone)-Poly(l-lactic acid) Semi-Interpenetrating Networks as Superior, Defect-Specific Scaffolds with Potential for Cranial Bone Defect Repair.
    Woodard LN; Kmetz KT; Roth AA; Page VM; Grunlan MA
    Biomacromolecules; 2017 Dec; 18(12):4075-4083. PubMed ID: 29037044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinoptilolite/PCL-PEG-PCL composite scaffolds for bone tissue engineering applications.
    Pazarçeviren E; Erdemli Ö; Keskin D; Tezcaner A
    J Biomater Appl; 2017 Mar; 31(8):1148-1168. PubMed ID: 27881642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous shape memory scaffold of dextran and hydroxyapatite for minimum invasive implantation for bone tissue engineering applications.
    Huang K; Yang MS; Tang YJ; Ling SY; Pan F; Liu XD; Chen J
    J Biomater Appl; 2021 Feb; 35(7):823-837. PubMed ID: 32842853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Star poly(ε-caprolactone)-based electrospun fibers as biocompatible scaffold for doxorubicin with prolonged drug release activity.
    Bala Balakrishnan P; Gardella L; Forouharshad M; Pellegrino T; Monticelli O
    Colloids Surf B Biointerfaces; 2018 Jan; 161():488-496. PubMed ID: 29128835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape memory materials promoting cell adhesion and tissue invasion towards the applications requiring minimally invasive implantation.
    Wang W; Zhao J; Li C; Pang Q
    J Biomater Sci Polym Ed; 2020 Oct; 31(14):1820-1835. PubMed ID: 32567531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocompatibility and Bone Regeneration by Shape Memory Polymer Scaffolds.
    Gasson SB; Dobson LK; Pfau-Cloud MR; Beltran FO; Pool RR; Gregory CA; Grunlan MA; Saunders WB
    J Biomed Mater Res A; 2025 Jan; 113(1):e37806. PubMed ID: 39404147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suitability of EtO Sterilization for Polydopamine-coated, Self-fitting Bone Scaffolds.
    Houk CJ; Beltran FO; Grunlan MA
    Polym Degrad Stab; 2021 Dec; 194():. PubMed ID: 34840360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermoreversibly crosslinked poly(ε-caprolactone) as recyclable shape-memory polymer network.
    Defize T; Riva R; Raquez JM; Dubois P; Jérôme C; Alexandre M
    Macromol Rapid Commun; 2011 Aug; 32(16):1264-9. PubMed ID: 21692124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.