BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 38529787)

  • 1. Practical 10-Color T-Cell Panel for Phenotyping Diverse Populations Using Spectral Flow Cytometry: A Beginner's Guide.
    Zargaran S; Oveisi M; Sun C; Barbour A; Glogauer M
    Curr Protoc; 2024 Mar; 4(3):e1020. PubMed ID: 38529787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Panel Optimization for High-Dimensional Immunophenotyping Assays Using Full-Spectrum Flow Cytometry.
    Ferrer-Font L; Small SJ; Lewer B; Pilkington KR; Johnston LK; Park LM; Lannigan J; Jaimes MC; Price KM
    Curr Protoc; 2021 Sep; 1(9):e222. PubMed ID: 34492732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow Cytometry Analysis to Identify Human CD8
    Flynn J; Gorry P
    Methods Mol Biol; 2019; 2048():1-13. PubMed ID: 31396924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Full-Spectrum Flow Cytometry to Phenotype Memory T and NKT Cell Subsets with Optimized Tissue-Specific Preparation Protocols.
    Farrand K; Holz LE; Ferrer-Font L; Wilson MD; Ganley M; Minnell JJ; Tang CW; Painter GF; Heath WR; Hermans IF; Burn OK
    Curr Protoc; 2022 Jul; 2(7):e482. PubMed ID: 35819836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OMIP-069: Forty-Color Full Spectrum Flow Cytometry Panel for Deep Immunophenotyping of Major Cell Subsets in Human Peripheral Blood.
    Park LM; Lannigan J; Jaimes MC
    Cytometry A; 2020 Oct; 97(10):1044-1051. PubMed ID: 32830910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Panel Design and Optimization for High-Dimensional Immunophenotyping Assays Using Spectral Flow Cytometry.
    Ferrer-Font L; Pellefigues C; Mayer JU; Small SJ; Jaimes MC; Price KM
    Curr Protoc Cytom; 2020 Mar; 92(1):e70. PubMed ID: 32150355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a 43 color panel for the characterization of conventional and unconventional T-cell subsets, B cells, NK cells, monocytes, dendritic cells, and innate lymphoid cells using spectral flow cytometry.
    Sahir F; Mateo JM; Steinhoff M; Siveen KS
    Cytometry A; 2020 Dec; ():. PubMed ID: 33336868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral Flow Cytometry Methods and Pipelines for Comprehensive Immunoprofiling of Human Peripheral Blood and Bone Marrow.
    Spasic M; Ogayo ER; Parsons AM; Mittendorf EA; van Galen P; McAllister SS
    Cancer Res Commun; 2024 Mar; 4(3):895-910. PubMed ID: 38466569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discrimination of Seven Immune Cell Subsets by Two-fluorochrome Flow Cytometry.
    Torchia MLG; Cimbro R
    J Vis Exp; 2019 Mar; (145):. PubMed ID: 30907891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating spectral cytometry for immune profiling in viral disease.
    Niewold P; Ashhurst TM; Smith AL; King NJC
    Cytometry A; 2020 Nov; 97(11):1165-1179. PubMed ID: 32799382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of endogenous and antibody-conjugated alkaline phosphatase with ELF-97 phosphate in multicolor flow cytometry applications.
    Telford W; Cox W; Singer V
    Cytometry; 2001 Feb; 43(2):117-25. PubMed ID: 11169576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Panel Design and Optimization for Full Spectrum Flow Cytometry.
    Ferrer-Font L; Small SJ; Hyde E; Pilkington KR; Price KM
    Methods Mol Biol; 2024; 2779():99-124. PubMed ID: 38526784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow Cytometry Analysis to Identify Human CD4
    Flynn J; Gorry P
    Methods Mol Biol; 2019; 2048():15-25. PubMed ID: 31396925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep phenotyping characterization of human unconventional CD8
    Orta-Resendiz A; Petitdemange C; Schmutz S; Jacquelin B; Novault S; Huot N; Müller-Trutwin M
    STAR Protoc; 2023 Dec; 4(4):102734. PubMed ID: 38032799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel full-spectral flow cytometry with multiple spectrally-adjacent fluorescent proteins and fluorochromes and visualization of in vivo cellular movement.
    Futamura K; Sekino M; Hata A; Ikebuchi R; Nakanishi Y; Egawa G; Kabashima K; Watanabe T; Furuki M; Tomura M
    Cytometry A; 2015 Sep; 87(9):830-42. PubMed ID: 26217952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Basic Multicolor Flow Cytometry.
    Maciorowski Z; Chattopadhyay PK; Jain P
    Curr Protoc Immunol; 2017 Apr; 117():5.4.1-5.4.38. PubMed ID: 28369683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beyond 40 fluorescent probes for deep phenotyping of blood mononuclear cells, using spectral technology.
    Schmutz S; Commere PH; Montcuquet N; Cumano A; Ait-Mansour C; Novault S; Hasan M
    Front Immunol; 2024; 15():1285215. PubMed ID: 38629063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multicompartmental analysis of the murine pulmonary immune response by spectral flow cytometry.
    Chang MY; Brune JE; Black M; Altemeier WA; Frevert CW
    Am J Physiol Lung Cell Mol Physiol; 2023 Oct; 325(4):L518-L535. PubMed ID: 37581225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Application of Flow Cytometry for Simultaneous and Multi-parametric Analysis of Heterogenous Cell Populations in Basic and Clinical Research.
    Schmit T; Klomp M; Khan MN
    Methods Mol Biol; 2021; 2223():183-200. PubMed ID: 33226596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OMIP-095: 40-Color spectral flow cytometry delineates all major leukocyte populations in murine lymphoid tissues.
    Kare AJ; Nichols L; Zermeno R; Raie MN; Tumbale SK; Ferrara KW
    Cytometry A; 2023 Nov; 103(11):839-850. PubMed ID: 37768325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.