These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 38529826)
1. Crystallization control of wide-bandgap perovskites for efficient solar cells Liu Z; Wang L; Liu X; Xie X; Chen P Nanoscale; 2024 Apr; 16(15):7670-7677. PubMed ID: 38529826 [TBL] [Abstract][Full Text] [Related]
2. Impact of Precursor Concentration on Perovskite Crystallization for Efficient Wide-Bandgap Solar Cells. Du S; Yang J; Qu S; Lan Z; Sun T; Dong Y; Shang Z; Liu D; Yang Y; Yan L; Wang X; Huang H; Ji J; Cui P; Li Y; Li M Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591518 [TBL] [Abstract][Full Text] [Related]
3. Interface Regulation by an Ultrathin Wide-Bandgap Halide for Stable and Efficient Inverted Perovskite Solar Cells. Sun Q; Zong B; Meng X; Shen B; Li X; Kang B; Silva SRP ACS Appl Mater Interfaces; 2022 Feb; 14(5):6702-6713. PubMed ID: 35077142 [TBL] [Abstract][Full Text] [Related]
4. Optimizing Crystallization in Wide-Bandgap Mixed Halide Perovskites for High-Efficiency Solar Cells. An Y; Zhang N; Zeng Z; Cai Y; Jiang W; Qi F; Ke L; Lin FR; Tsang SW; Shi T; Jen AK; Yip HL Adv Mater; 2024 Apr; 36(17):e2306568. PubMed ID: 37677058 [TBL] [Abstract][Full Text] [Related]
5. CsPbCl Li R; Chen B; Ren N; Wang P; Shi B; Xu Q; Zhao H; Han W; Zhu Z; Liu J; Huang Q; Zhang D; Zhao Y; Zhang X Adv Mater; 2022 Jul; 34(27):e2201451. PubMed ID: 35476756 [TBL] [Abstract][Full Text] [Related]
6. Amide-Catalyzed Phase-Selective Crystallization Reduces Defect Density in Wide-Bandgap Perovskites. Kim J; Saidaminov MI; Tan H; Zhao Y; Kim Y; Choi J; Jo JW; Fan J; Quintero-Bermudez R; Yang Z; Quan LN; Wei M; Voznyy O; Sargent EH Adv Mater; 2018 Mar; 30(13):e1706275. PubMed ID: 29441615 [TBL] [Abstract][Full Text] [Related]
7. Manipulating Crystallization of Organolead Mixed-Halide Thin Films in Antisolvent Baths for Wide-Bandgap Perovskite Solar Cells. Zhou Y; Yang M; Game OS; Wu W; Kwun J; Strauss MA; Yan Y; Huang J; Zhu K; Padture NP ACS Appl Mater Interfaces; 2016 Jan; 8(3):2232-7. PubMed ID: 26726763 [TBL] [Abstract][Full Text] [Related]
8. Phase-Stable Wide-Bandgap Perovskites for Four-Terminal Perovskite/Silicon Tandem Solar Cells with Over 30% Efficiency. Yao Y; Hang P; Li B; Hu Z; Kan C; Xie J; Wang Y; Zhang Y; Yang D; Yu X Small; 2022 Sep; 18(38):e2203319. PubMed ID: 35896945 [TBL] [Abstract][Full Text] [Related]
9. Precise Control of Crystallization and Phase-Transition with Green Anti-Solvent in Wide-Bandgap Perovskite Solar Cells with Open-Circuit Voltage Exceeding 1.25 V. Zhang X; Li X; Tao L; Zhang Z; Ling H; Fu X; Wang S; Ko MJ; Luo J; Chen J; Li Y Small; 2023 Jun; 19(22):e2208289. PubMed ID: 36871149 [TBL] [Abstract][Full Text] [Related]
10. Steric Engineering Enables Efficient and Photostable Wide-Bandgap Perovskites for All-Perovskite Tandem Solar Cells. Wen J; Zhao Y; Liu Z; Gao H; Lin R; Wan S; Ji C; Xiao K; Gao Y; Tian Y; Xie J; Brabec CJ; Tan H Adv Mater; 2022 Jul; 34(26):e2110356. PubMed ID: 35439839 [TBL] [Abstract][Full Text] [Related]
11. Anti-Solvent-Free Preparation for Efficient and Photostable Pure-Iodide Wide-Bandgap Perovskite Solar Cells. Nie T; Fang Z; Yang T; Zhao K; Ding J; Liu SF Angew Chem Int Ed Engl; 2024 Apr; 63(17):e202400205. PubMed ID: 38436587 [TBL] [Abstract][Full Text] [Related]
12. Intermediate Phase Suppression with Long Chain Diammonium Alkane for High Performance Wide-Bandgap and Tandem Perovskite Solar Cells. Jia P; Chen G; Li G; Liang J; Guan H; Wang C; Pu D; Ge Y; Hu X; Cui H; Du S; Liang C; Liao J; Xing G; Ke W; Fang G Adv Mater; 2024 Jun; 36(25):e2400105. PubMed ID: 38452401 [TBL] [Abstract][Full Text] [Related]
13. Multiple-cation wide-bandgap perovskite solar cells grown using cesium formate as the Cs precursor with high efficiency under sunlight and indoor illumination. Guo Q; Ding Y; Dai Z; Chen Z; Du M; Wang Z; Gao L; Duan C; Guo Q; Zhou E Phys Chem Chem Phys; 2022 Jul; 24(29):17526-17534. PubMed ID: 35851910 [TBL] [Abstract][Full Text] [Related]
14. Heterojunction formed via 3D-to-2D perovskite conversion for photostable wide-bandgap perovskite solar cells. Wen J; Zhao Y; Wu P; Liu Y; Zheng X; Lin R; Wan S; Li K; Luo H; Tian Y; Li L; Tan H Nat Commun; 2023 Nov; 14(1):7118. PubMed ID: 37932289 [TBL] [Abstract][Full Text] [Related]
15. Recent Advances in Wide Bandgap Perovskite Solar Cells: Focus on Lead-Free Materials for Tandem Structures. Jang WJ; Jang HW; Kim SY Small Methods; 2024 Feb; 8(2):e2300207. PubMed ID: 37203293 [TBL] [Abstract][Full Text] [Related]
16. Highly stable hole-conductor-free perovskite solar cells based upon ammonium chloride and a carbon electrode. Zong B; Fu W; Guo ZA; Wang S; Huang L; Zhang B; Bala H; Cao J; Wang X; Sun G; Zhang Z J Colloid Interface Sci; 2019 Mar; 540():315-321. PubMed ID: 30660084 [TBL] [Abstract][Full Text] [Related]
17. Strain Regulation of Mixed-Halide Perovskites Enables High-Performance Wide-Bandgap Photovoltaics. Li X; Li Y; Feng Y; Qi J; Shen J; Shi G; Yang S; Yuan M; He T Adv Mater; 2024 Jun; 36(23):e2401103. PubMed ID: 38375740 [TBL] [Abstract][Full Text] [Related]
18. Di-isopropyl ether assisted crystallization of organic-inorganic perovskites for efficient and reproducible perovskite solar cells. Wang LY; Deng LL; Wang X; Wang T; Liu HR; Dai SM; Xing Z; Xie SY; Huang RB; Zheng LS Nanoscale; 2017 Nov; 9(45):17893-17901. PubMed ID: 29119988 [TBL] [Abstract][Full Text] [Related]
19. Highly Efficient and Stable GABr-Modified Ideal-Bandgap (1.35 eV) Sn/Pb Perovskite Solar Cells Achieve 20.63% Efficiency with a Record Small V Zhou X; Zhang L; Wang X; Liu C; Chen S; Zhang M; Li X; Yi W; Xu B Adv Mater; 2020 Apr; 32(14):e1908107. PubMed ID: 32100401 [TBL] [Abstract][Full Text] [Related]
20. Wide-Bandgap Organic-Inorganic Lead Halide Perovskite Solar Cells. Tong Y; Najar A; Wang L; Liu L; Du M; Yang J; Li J; Wang K; Liu SF Adv Sci (Weinh); 2022 May; 9(14):e2105085. PubMed ID: 35257511 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]