BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 38529898)

  • 21. Hrs1/Med3 is a Cyc8-Tup1 corepressor target in the RNA polymerase II holoenzyme.
    Papamichos-Chronakis M; Conlan RS; Gounalaki N; Copf T; Tzamarias D
    J Biol Chem; 2000 Mar; 275(12):8397-403. PubMed ID: 10722672
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Tup1-Cyc8 protein complex can shift from a transcriptional co-repressor to a transcriptional co-activator.
    Conlan RS; Gounalaki N; Hatzis P; Tzamarias D
    J Biol Chem; 1999 Jan; 274(1):205-10. PubMed ID: 9867831
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Cyc8 (Ssn6)-Tup1 corepressor complex is composed of one Cyc8 and four Tup1 subunits.
    Varanasi US; Klis M; Mikesell PB; Trumbly RJ
    Mol Cell Biol; 1996 Dec; 16(12):6707-14. PubMed ID: 8943325
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acquisition of the ability to assimilate mannitol by Saccharomyces cerevisiae through dysfunction of the general corepressor Tup1-Cyc8.
    Chujo M; Yoshida S; Ota A; Murata K; Kawai S
    Appl Environ Microbiol; 2015 Jan; 81(1):9-16. PubMed ID: 25304510
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic analysis of the role of Pol II holoenzyme components in repression by the Cyc8-Tup1 corepressor in yeast.
    Lee M; Chatterjee S; Struhl K
    Genetics; 2000 Aug; 155(4):1535-42. PubMed ID: 10924455
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2)-dependent Tup1 conversion (PIPTC) regulates metabolic reprogramming from glycolysis to gluconeogenesis.
    Han BK; Emr SD
    J Biol Chem; 2013 Jul; 288(28):20633-45. PubMed ID: 23733183
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diverse roles of Tup1p and Cyc8p transcription regulators in the development of distinct types of yeast populations.
    Váchová L; Palková Z
    Curr Genet; 2019 Feb; 65(1):147-151. PubMed ID: 30191307
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hog1 kinase converts the Sko1-Cyc8-Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress.
    Proft M; Struhl K
    Mol Cell; 2002 Jun; 9(6):1307-17. PubMed ID: 12086627
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic analysis argues for a coactivator function for the Saccharomyces cerevisiae Tup1 corepressor.
    Parnell EJ; Parnell TJ; Stillman DJ
    Genetics; 2021 Oct; 219(2):. PubMed ID: 34849878
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of TUP1, a mediator of glucose repression in Saccharomyces cerevisiae.
    Williams FE; Trumbly RJ
    Mol Cell Biol; 1990 Dec; 10(12):6500-11. PubMed ID: 2247069
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sas3 and Ada2(Gcn5)-dependent histone H3 acetylation is required for transcription elongation at the de-repressed FLO1 gene.
    Church M; Smith KC; Alhussain MM; Pennings S; Fleming AB
    Nucleic Acids Res; 2017 May; 45(8):4413-4430. PubMed ID: 28115623
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional characterization and comparative analysis of gene repression-mediating domains interacting with yeast pleiotropic corepressors Sin3, Cyc8 and Tup1.
    Lettow J; Kliewe F; Aref R; Schüller HJ
    Curr Genet; 2023 Jun; 69(2-3):127-139. PubMed ID: 36854981
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic Adaptation to Nutrients Involves Coregulation of Gene Expression by the RNA Helicase Dbp2 and the Cyc8 Corepressor in
    Wang S; Xing Z; Pascuzzi PE; Tran EJ
    G3 (Bethesda); 2017 Jul; 7(7):2235-2247. PubMed ID: 28500049
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional analysis of the global repressor Tup1 for maltose metabolism in Saccharomyces cerevisiae: different roles of the functional domains.
    Lin X; Yu AQ; Zhang CY; Pi L; Bai XW; Xiao DG
    Microb Cell Fact; 2017 Nov; 16(1):194. PubMed ID: 29121937
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2.
    Conlan RS; Tzamarias D
    J Mol Biol; 2001 Jun; 309(5):1007-15. PubMed ID: 11399075
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental Evolution Reveals Favored Adaptive Routes to Cell Aggregation in Yeast.
    Hope EA; Amorosi CJ; Miller AW; Dang K; Heil CS; Dunham MJ
    Genetics; 2017 Jun; 206(2):1153-1167. PubMed ID: 28450459
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tup1 co-repressor.
    Papamichos-Chronakis M; Gligoris T; Tzamarias D
    EMBO Rep; 2004 Apr; 5(4):368-72. PubMed ID: 15031717
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptional regulation of flocculation genes in Saccharomyces cerevisiae.
    Teunissen AW; van den Berg JA; Steensma HY
    Yeast; 1995 Apr; 11(5):435-46. PubMed ID: 7597847
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tup1 Paralog
    Bui LN; Iosue CL; Wykoff DD
    mSphere; 2022 Apr; 7(2):e0076521. PubMed ID: 35341317
    [No Abstract]   [Full Text] [Related]  

  • 40. Carbon catabolite repression involves physical interaction of the transcription factor CRE1/CreA and the Tup1-Cyc8 complex in Penicillium oxalicum and Trichoderma reesei.
    Hu Y; Li M; Liu Z; Song X; Qu Y; Qin Y
    Biotechnol Biofuels; 2021 Dec; 14(1):244. PubMed ID: 34952627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.