These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38529948)

  • 1. Understanding the Growth Mechanism of HgTe Colloidal Quantum Dots through Bilateral Injection.
    Yang H; Zhang Q; Chang R; Wu Z; Shen H
    Inorg Chem; 2024 Apr; 63(14):6231-6238. PubMed ID: 38529948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-Synthesis Se-Stabilization Enables Defect and Doping Engineering of HgTe Colloidal Quantum Dots.
    Yu M; Yang J; Zhang X; Yuan M; Zhang J; Gao L; Tang J; Lan X
    Adv Mater; 2024 Jul; 36(27):e2311830. PubMed ID: 38501495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand-Engineered HgTe Colloidal Quantum Dot Solids for Infrared Photodetectors.
    Yang J; Hu H; Lv Y; Yuan M; Wang B; He Z; Chen S; Wang Y; Hu Z; Yu M; Zhang X; He J; Zhang J; Liu H; Hsu HY; Tang J; Song H; Lan X
    Nano Lett; 2022 Apr; 22(8):3465-3472. PubMed ID: 35435694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast and Sensitive Colloidal Quantum Dot Mid-Wave Infrared Photodetectors.
    Ackerman MM; Tang X; Guyot-Sionnest P
    ACS Nano; 2018 Jul; 12(7):7264-7271. PubMed ID: 29975502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MoS
    Huo N; Gupta S; Konstantatos G
    Adv Mater; 2017 May; 29(17):. PubMed ID: 28247438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Performance Visible to Mid-Infrared Photodetectors Based on HgTe Colloidal Quantum Dots under Room Temperature.
    Xia K; Gao XD; Fei GT; Xu SH; Liang YF; Qu XX
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38669621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergism in Binary Nanocrystals Enables Top-Illuminated HgTe Colloidal Quantum Dot Short-Wave Infrared Imager.
    Wang B; Yuan M; Liu J; Zhang X; Liu J; Yang J; Gao L; Zhang J; Tang J; Lan X
    Nano Lett; 2024 Jul; ():. PubMed ID: 39041791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shape-Controlled HgTe Colloidal Quantum Dots and Reduced Spin-Orbit Splitting in the Tetrahedral Shape.
    Zhang H; Guyot-Sionnest P
    J Phys Chem Lett; 2020 Aug; 11(16):6860-6866. PubMed ID: 32787206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slow Auger Relaxation in HgTe Colloidal Quantum Dots.
    Melnychuk C; Guyot-Sionnest P
    J Phys Chem Lett; 2018 May; 9(9):2208-2211. PubMed ID: 29648452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hot-Injection Synthesis of HgTe Nanoparticles: Shape Control and Growth Mechanisms.
    Xia K; Fei GT; Xu SH; Gao XD; Liang YF
    Inorg Chem; 2023 Aug; 62(33):13632-13638. PubMed ID: 37552842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Room Temperature Broadband Bi
    Yu L; Tian P; Tang L; Zuo W; Zhong H; Hao Q; Teng KS; Zhao G; Su R; Gong X; Yuan J
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical properties of HgTe colloidal quantum dots.
    Lhuillier E; Keuleyan S; Guyot-Sionnest P
    Nanotechnology; 2012 May; 23(17):175705. PubMed ID: 22481378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Obviating Ligand Exchange Preserves the Intact Surface of HgTe Colloidal Quantum Dots and Enhances Performance of Short Wavelength Infrared Photodetectors.
    Sergeeva KA; Hu S; Sokolova AV; Portniagin AS; Chen D; Kershaw SV; Rogach AL
    Adv Mater; 2024 Apr; 36(17):e2306518. PubMed ID: 37572367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. InAs Nanorod Colloidal Quantum Dots with Tunable Bandgaps Deep into the Short-Wave Infrared.
    Sheikh T; Mir WJ; Nematulloev S; Maity P; Yorov KE; Hedhili MN; Emwas AH; Khan MS; Abulikemu M; Mohammed OF; Bakr OM
    ACS Nano; 2023 Nov; 17(22):23094-23102. PubMed ID: 37955579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient HgTe colloidal quantum dot-sensitized near-infrared photovoltaic cells.
    Im SH; Kim HJ; Kim SW; Kim SW; Seok SI
    Nanoscale; 2012 Mar; 4(5):1581-4. PubMed ID: 22301811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-Pot Colloidal Synthesis Enables Highly Tunable InSb Short-Wave Infrared Quantum Dots Exhibiting Carrier Multiplication.
    Mir WJ; Sheikh T; Nematulloev S; Maity P; Yorov KE; Emwas AH; Hedhili MN; Khan MS; Abulikemu M; Mohammed OF; Bakr OM
    Small; 2024 May; 20(19):e2306535. PubMed ID: 38063843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dicarboxylic Acid-Assisted Surface Oxide Removal and Passivation of Indium Antimonide Colloidal Quantum Dots for Short-Wave Infrared Photodetectors.
    Zhang Y; Xia P; Rehl B; Parmar DH; Choi D; Imran M; Chen Y; Liu Y; Vafaie M; Li C; Atan O; Pina JM; Paritmongkol W; Levina L; Voznyy O; Hoogland S; Sargent EH
    Angew Chem Int Ed Engl; 2024 Feb; 63(8):e202316733. PubMed ID: 38170453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Halide-Amine Co-Passivated Indium Phosphide Colloidal Quantum Dots in Tetrahedral Shape.
    Kim K; Yoo D; Choi H; Tamang S; Ko JH; Kim S; Kim YH; Jeong S
    Angew Chem Int Ed Engl; 2016 Mar; 55(11):3714-8. PubMed ID: 26849683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conduction Band Fine Structure in Colloidal HgTe Quantum Dots.
    Hudson MH; Chen M; Kamysbayev V; Janke EM; Lan X; Allan G; Delerue C; Lee B; Guyot-Sionnest P; Talapin DV
    ACS Nano; 2018 Sep; 12(9):9397-9404. PubMed ID: 30125488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strongly Confined HgTe 2D Nanoplatelets as Narrow Near-Infrared Emitters.
    Izquierdo E; Robin A; Keuleyan S; Lequeux N; Lhuillier E; Ithurria S
    J Am Chem Soc; 2016 Aug; 138(33):10496-501. PubMed ID: 27487074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.