These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38529948)

  • 21. Reversible Electrochemistry of Mercury Chalcogenide Colloidal Quantum Dot Films.
    Chen M; Guyot-Sionnest P
    ACS Nano; 2017 Apr; 11(4):4165-4173. PubMed ID: 28314094
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal Imaging with Plasmon Resonance Enhanced HgTe Colloidal Quantum Dot Photovoltaic Devices.
    Tang X; Ackerman MM; Guyot-Sionnest P
    ACS Nano; 2018 Jul; 12(7):7362-7370. PubMed ID: 29985583
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Short-Wave Infrared Detection and Imaging Employing Size-Customized HgTe Nanocrystals.
    Wang B; Hu H; Yuan M; Yang J; Liu J; Gao L; Zhang J; Tang J; Lan X
    Small Methods; 2024 Feb; ():e2301557. PubMed ID: 38381091
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Halide-Driven Synthetic Control of InSb Colloidal Quantum Dots Enables Short-Wave Infrared Photodetectors.
    Muhammad ; Choi D; Parmar DH; Rehl B; Zhang Y; Atan O; Kim G; Xia P; Pina JM; Li M; Liu Y; Voznyy O; Hoogland S; Sargent EH
    Adv Mater; 2023 Nov; 35(46):e2306147. PubMed ID: 37734861
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mercury telluride colloidal quantum dots: electronic structure, size-dependent spectra, and photocurrent detection up to 12 μm.
    Keuleyan SE; Guyot-Sionnest P; Delerue C; Allan G
    ACS Nano; 2014 Aug; 8(8):8676-82. PubMed ID: 25117471
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrasensitive Colloidal Quantum-Dot Upconverters for Extended Short-Wave Infrared.
    Mu G; Rao T; Zhang S; Wen C; Chen M; Hao Q; Tang X
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45553-45561. PubMed ID: 36166596
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solution Processed Hybrid Polymer: HgTe Quantum Dot Phototransistor with High Sensitivity and Fast Infrared Response up to 2400 nm at Room Temperature.
    Dong Y; Chen M; Yiu WK; Zhu Q; Zhou G; Kershaw SV; Ke N; Wong CP; Rogach AL; Zhao N
    Adv Sci (Weinh); 2020 Jun; 7(12):2000068. PubMed ID: 32596115
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of Nonaggregating HgTe Colloidal Quantum Dots and the Emergence of Air-Stable n-Doping.
    Shen G; Chen M; Guyot-Sionnest P
    J Phys Chem Lett; 2017 May; 8(10):2224-2228. PubMed ID: 28467091
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Room-Temperature 15% Efficient Mid-Infrared HgTe Colloidal Quantum Dot Photodiodes.
    Peterson JC; Guyot-Sionnest P
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):19163-19169. PubMed ID: 37022942
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mid-infrared HgTe/As2S3 field effect transistors and photodetectors.
    Lhuillier E; Keuleyan S; Zolotavin P; Guyot-Sionnest P
    Adv Mater; 2013 Jan; 25(1):137-41. PubMed ID: 23027629
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mercury Chalcogenide Colloidal Quantum Dots for Infrared Photodetectors.
    Hao Q; Ma H; Xing X; Tang X; Wei Z; Zhao X; Chen M
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068065
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physiological effect of colloidal carbon quantum dots on
    Han Y; Han Y; Du G; Zhang T; Guo Q; Yang H; Li R; Xu Y
    RSC Adv; 2021 Feb; 11(11):6212-6220. PubMed ID: 35423135
    [No Abstract]   [Full Text] [Related]  

  • 33. Electron-Transport Layers Employing Strongly Bound Ligands Enhance Stability in Colloidal Quantum Dot Infrared Photodetectors.
    Zhang Y; Vafaie M; Xu J; Pina JM; Xia P; Najarian AM; Atan O; Imran M; Xie K; Hoogland S; Sargent EH
    Adv Mater; 2022 Nov; 34(47):e2206884. PubMed ID: 36134538
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Room-Temperature Single-Photon Sources Based on Colloidal Quantum Dots: A Review.
    Ye Y; Lin X; Fang W
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138825
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transport properties of a 1000 nm HgTe film: the interplay of surface and bulk carriers.
    Savchenko ML; Kozlov DA; Vasilev NN; Mikhailov NN; Dvoretsky SA; Kvon ZD
    J Phys Condens Matter; 2023 May; 35(34):. PubMed ID: 37187189
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unlocking the Molecular Behavior of Natural Amine-Targeted Carbon Quantum Dots for the Synthesis of Diverse Pharmacophore Scaffolds via an Unusual Nanoaminocatalytic Route.
    Saini S; Saini P; Kumar K; Sethi M; Meena P; Gurjar A; Dandia A; Dhuria T; Parewa V
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49083-49094. PubMed ID: 37819203
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of colloidal HgTe quantum dots for narrow mid-IR emission and detection.
    Keuleyan S; Lhuillier E; Guyot-Sionnest P
    J Am Chem Soc; 2011 Oct; 133(41):16422-4. PubMed ID: 21942339
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intraband Transition of HgTe Nanocrystals for Long-Wave Infrared Detection at 12 μm.
    Zhang H; Peterson JC; Guyot-Sionnest P
    ACS Nano; 2023 Apr; 17(8):7530-7538. PubMed ID: 37027314
    [TBL] [Abstract][Full Text] [Related]  

  • 39. InSb/InP Core-Shell Colloidal Quantum Dots for Sensitive and Fast Short-Wave Infrared Photodetectors.
    Peng L; Wang Y; Ren Y; Wang Z; Cao P; Konstantatos G
    ACS Nano; 2024 Feb; 18(6):5113-5121. PubMed ID: 38305195
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanocellulose-Based Passivated-Carbon Quantum Dots (P-CQDs) for Antimicrobial Applications: A Practical Review.
    Hindi SS; Sabir JSM; Dawoud UM; Ismail IM; Asiry KA; Mirdad ZM; Abo-Elyousr KA; Shiboob MH; Gabal MA; Albureikan MOI; Alanazi RA; Ibrahim OHM
    Polymers (Basel); 2023 Jun; 15(12):. PubMed ID: 37376306
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.