These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Limiting Factors of Detectivity in Near-Infrared Colloidal Quantum Dot Photodetectors. Gong W; Wang P; Deng W; Zhang X; An B; Li J; Sun Z; Dai D; Liu Z; Li J; Zhang Y ACS Appl Mater Interfaces; 2022 Jun; 14(22):25812-25823. PubMed ID: 35616595 [TBL] [Abstract][Full Text] [Related]
44. Mid- and Long-Wave Infrared Optoelectronics via Intraband Transitions in PbS Colloidal Quantum Dots. Ramiro I; Özdemir O; Christodoulou S; Gupta S; Dalmases M; Torre I; Konstantatos G Nano Lett; 2020 Feb; 20(2):1003-1008. PubMed ID: 31934762 [TBL] [Abstract][Full Text] [Related]
45. Highly photoluminescent N, P doped carbon quantum dots as a fluorescent sensor for the detection of dopamine and temperature. Tammina SK; Yang D; Koppala S; Cheng C; Yang Y J Photochem Photobiol B; 2019 May; 194():61-70. PubMed ID: 30927703 [TBL] [Abstract][Full Text] [Related]
46. First-principles analysis for the modulation of energy band gap and optical characteristics in HgTe/CdTe superlattices. Laref A; Alsagri M; Alahmed ZA; Laref S RSC Adv; 2019 May; 9(29):16390-16405. PubMed ID: 35516368 [TBL] [Abstract][Full Text] [Related]
47. Carbon Quantum Dots Based on Marine Polysaccharides: Types, Synthesis, and Applications. Torres FG; Gonzales KN; Troncoso OP; Cañedo VS Mar Drugs; 2023 May; 21(6):. PubMed ID: 37367663 [TBL] [Abstract][Full Text] [Related]
48. Investigating the effect of N-doping on carbon quantum dots structure, optical properties and metal ion screening. Nguyen KG; Baragau IA; Gromicova R; Nicolaev A; Thomson SAJ; Rennie A; Power NP; Sajjad MT; Kellici S Sci Rep; 2022 Aug; 12(1):13806. PubMed ID: 35970901 [TBL] [Abstract][Full Text] [Related]
49. Impact of D2O/H2O Solvent Exchange on the Emission of HgTe and CdTe Quantum Dots: Polaron and Energy Transfer Effects. Wen Q; Kershaw SV; Kalytchuk S; Zhovtiuk O; Reckmeier C; Vasilevskiy MI; Rogach AL ACS Nano; 2016 Apr; 10(4):4301-11. PubMed ID: 26958866 [TBL] [Abstract][Full Text] [Related]
51. Ultrastable Carbon Quantum Dots-Doped MAPbBr Wang J; Li M; Shen W; Su W; He R ACS Appl Mater Interfaces; 2019 Sep; 11(37):34348-34354. PubMed ID: 31455081 [TBL] [Abstract][Full Text] [Related]
52. Intraband Transitions of Nanocrystals Transforming from Lead Selenide to Self-doped Silver Selenide Quantum Dots by Cation Exchange. Bera R; Choi D; Jung YS; Song H; Jeong KS J Phys Chem Lett; 2022 Jul; 13(26):6138-6146. PubMed ID: 35759614 [TBL] [Abstract][Full Text] [Related]
53. Generic and Scalable Method for the Preparation of Monodispersed Metal Sulfide Nanocrystals with Tunable Optical Properties. Bera A; Mandal D; Goswami PN; Rath AK; Prasad BLV Langmuir; 2018 May; 34(20):5788-5797. PubMed ID: 29715041 [TBL] [Abstract][Full Text] [Related]
54. Green synthesis of multifunctional carbon quantum dots: An approach in cancer theranostics. Malavika JP; Shobana C; Sundarraj S; Ganeshbabu M; Kumar P; Selvan RK Biomater Adv; 2022 May; 136():212756. PubMed ID: 35929302 [TBL] [Abstract][Full Text] [Related]
55. Carbon quantum dots and their biomedical and therapeutic applications: a review. Molaei MJ RSC Adv; 2019 Feb; 9(12):6460-6481. PubMed ID: 35518468 [TBL] [Abstract][Full Text] [Related]
56. Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots. Geiregat P; Houtepen AJ; Sagar LK; Infante I; Zapata F; Grigel V; Allan G; Delerue C; Van Thourhout D; Hens Z Nat Mater; 2018 Jan; 17(1):35-42. PubMed ID: 29035357 [TBL] [Abstract][Full Text] [Related]
57. Electroluminescence from HgTe Nanocrystals and Its Use for Active Imaging. Qu J; Rastogi P; Gréboval C; Lagarde D; Chu A; Dabard C; Khalili A; Cruguel H; Robert C; Xu XZ; Ithurria S; Silly MG; Ferré S; Marie X; Lhuillier E Nano Lett; 2020 Aug; 20(8):6185-6190. PubMed ID: 32662652 [TBL] [Abstract][Full Text] [Related]
58. HgTe Nanocrystals for SWIR Detection and Their Integration up to the Focal Plane Array. Chu A; Martinez B; Ferré S; Noguier V; Gréboval C; Livache C; Qu J; Prado Y; Casaretto N; Goubet N; Cruguel H; Dudy L; Silly MG; Vincent G; Lhuillier E ACS Appl Mater Interfaces; 2019 Sep; 11(36):33116-33123. PubMed ID: 31426628 [TBL] [Abstract][Full Text] [Related]
59. Interaction of lignin and xylan in the hydrothermal synthesis of lignocellulose-based carbon quantum dots and their application in in-vivo bioimaging. Zhao S; Chen X; Su J; Zhao P; Si C; Xu T; Huang C; Song X Int J Biol Macromol; 2022 Dec; 222(Pt B):1876-1887. PubMed ID: 36202332 [TBL] [Abstract][Full Text] [Related]
60. Carbon-Based Quantum Dots with Solid-State Photoluminescent: Mechanism, Implementation, and Application. Xu A; Wang G; Li Y; Dong H; Yang S; He P; Ding G Small; 2020 Dec; 16(48):e2004621. PubMed ID: 33145929 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]