These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 38530022)

  • 1. Surface-Enhanced Raman Scattering Using 2D Materials.
    Pinto de Sousa B; Fateixa S; Trindade T
    Chemistry; 2024 Jun; 30(31):e202303658. PubMed ID: 38530022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beyond the Charge Transfer Mechanism for 2D Materials-Assisted Surface Enhanced Raman Scattering.
    Wang S; Wei Y; Zheng S; Zhang Z; Tang X; Liang L; Zang Z; Qian Q
    Anal Chem; 2024 Jun; 96(24):9917-9926. PubMed ID: 38837181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Trends in Nanoarchitectured SERS Substrates: Nanospaces, 2D Materials, and Organic Heterostructures.
    Guselnikova O; Lim H; Kim HJ; Kim SH; Gorbunova A; Eguchi M; Postnikov P; Nakanishi T; Asahi T; Na J; Yamauchi Y
    Small; 2022 Jun; 18(25):e2107182. PubMed ID: 35570326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lighting up the Raman signal of molecules in the vicinity of graphene related materials.
    Ling X; Huang S; Deng S; Mao N; Kong J; Dresselhaus MS; Zhang J
    Acc Chem Res; 2015 Jul; 48(7):1862-70. PubMed ID: 26056861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon-Free Surface-Enhanced Raman Spectroscopy Using Metallic 2D Materials.
    Song X; Wang Y; Zhao F; Li Q; Ta HQ; Rümmeli MH; Tully CG; Li Z; Yin WJ; Yang L; Lee KB; Yang J; Bozkurt I; Liu S; Zhang W; Chhowalla M
    ACS Nano; 2019 Jul; 13(7):8312-8319. PubMed ID: 31284713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MoS
    Ghopry SA; Sadeghi SM; Berrie CL; Wu JZ
    Biosensors (Basel); 2021 Nov; 11(12):. PubMed ID: 34940234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-imaging, detection and analysis by using nanostructures as SERS substrates.
    Xie W; Qiu P; Mao C
    J Mater Chem; 2011 Apr; 21(14):5190-5202. PubMed ID: 21625344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonics-based nanostructures for surface-enhanced Raman scattering bioanalysis.
    Vo-Dinh T; Yan F; Stokes DL
    Methods Mol Biol; 2005; 300():255-83. PubMed ID: 15657488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrates for Surface-Enhanced Raman Scattering Formed on Nanostructured Non-Metallic Materials: Preparation and Characterization.
    Krajczewski J; Ambroziak R; Kudelski A
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33396325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noble-Metal-Free Materials for Surface-Enhanced Raman Spectroscopy Detection.
    Tan X; Melkersson J; Wu S; Wang L; Zhang J
    Chemphyschem; 2016 Sep; 17(17):2630-9. PubMed ID: 27191682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple SERS substrates: powerful, portable, and full of potential.
    Betz JF; Yu WW; Cheng Y; White IM; Rubloff GW
    Phys Chem Chem Phys; 2014 Feb; 16(6):2224-39. PubMed ID: 24366393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: emerging opportunities in analyte manipulations and hybrid materials.
    Lee HK; Lee YH; Koh CSL; Phan-Quang GC; Han X; Lay CL; Sim HYF; Kao YC; An Q; Ling XY
    Chem Soc Rev; 2019 Feb; 48(3):731-756. PubMed ID: 30475351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods.
    Hossain MK; Kitahama Y; Huang GG; Han X; Ozaki Y
    Anal Bioanal Chem; 2009 Aug; 394(7):1747-60. PubMed ID: 19384546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy.
    Wei H; Xu H
    Nanoscale; 2013 Nov; 5(22):10794-805. PubMed ID: 24113688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring and Engineering 2D Transition Metal Dichalcogenides toward Ultimate SERS Performance.
    Tang X; Hao Q; Hou X; Lan L; Li M; Yao L; Zhao X; Ni Z; Fan X; Qiu T
    Adv Mater; 2024 May; 36(19):e2312348. PubMed ID: 38302855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling near-field and far-field relationships for 3D SERS substrates--a combined experimental and theoretical analysis.
    Kurouski D; Large N; Chiang N; Greeneltch N; Carron KT; Seideman T; Schatz GC; Van Duyne RP
    Analyst; 2016 Mar; 141(5):1779-88. PubMed ID: 26858996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry.
    Fan M; Andrade GFS; Brolo AG
    Anal Chim Acta; 2020 Feb; 1097():1-29. PubMed ID: 31910948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman Scattering-Based Biosensing: New Prospects and Opportunities.
    Serebrennikova KV; Berlina AN; Sotnikov DV; Zherdev AV; Dzantiev BB
    Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-enhanced vibrational spectroscopy of B vitamins: what is the effect of SERS-active metals used?
    Kokaislová A; Matějka P
    Anal Bioanal Chem; 2012 May; 403(4):985-93. PubMed ID: 22281680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-enhanced Raman scattering of suspended monolayer graphene.
    Huang CW; Lin BJ; Lin HY; Huang CH; Shih FY; Wang WH; Liu CY; Chui HC
    Nanoscale Res Lett; 2013 Nov; 8(1):480. PubMed ID: 24229405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.