These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38530048)

  • 1. Hybrid Hydrogen Bonding Strategy to Construct Instantaneous Self-Healing Highly Elastic Ionohydrogel for Multi-Functional Electronics.
    Huang H; Sun L; Zhang L; Zhang Y; Zhang Y; Zhao S; Gu S; Sun W; You Z
    Small; 2024 Mar; ():e2400912. PubMed ID: 38530048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Fabrication of Benzoquinone Crystal Layer on the Surface of Nest-Structural Ionohydrogel for Flexible "All-in-One" Supercapattery.
    Shang Y; Wei J; He X; Zhao J; Shen H; Wu D; Wu T; Wang Q
    Adv Mater; 2023 Mar; 35(12):e2208443. PubMed ID: 36546579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stretchable and Self-Healing Integrated All-Gel-State Supercapacitors Enabled by a Notch-Insensitive Supramolecular Hydrogel Electrolyte.
    Shi Y; Zhang Y; Jia L; Zhang Q; Xu X
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36028-36036. PubMed ID: 30265506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hofmeister-Effect-Guided Ionohydrogel Design as Printable Bioelectronic Devices.
    Shang Y; Wu C; Hang C; Lu H; Wang Q
    Adv Mater; 2020 Jul; 32(30):e2000189. PubMed ID: 32567056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional Nanostructured Conductive Polymer Gels: Synthesis, Properties, and Applications.
    Zhao F; Shi Y; Pan L; Yu G
    Acc Chem Res; 2017 Jul; 50(7):1734-1743. PubMed ID: 28649845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conductive Gels for Energy Storage, Conversion, and Generation: Materials Design Strategies, Properties, and Applications.
    Bari GAKMR; Jeong JH; Barai HR
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A zinc-ion battery-type self-powered strain sensing system by using a high-performance ionic hydrogel.
    Li Y; Miao R; Yang Y; Han L; Han Q
    Soft Matter; 2023 Oct; 19(41):8022-8032. PubMed ID: 37830392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent progress in self-healable ion gels.
    Tamate R; Watanabe M
    Sci Technol Adv Mater; 2020 Jun; 21(1):388-401. PubMed ID: 32939164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-Stretchable, Self-Healing, Conductive, and Transparent PAA/DES Ionic Gel.
    Wang J; Ma Z; Wang Y; Shao J; Yan L
    Macromol Rapid Commun; 2021 Jan; 42(2):e2000445. PubMed ID: 33191561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Healing and Antibacterial Essential Oil-Loaded Mesoporous Silica/Polyacrylate Hybrid Hydrogel for High-Performance Wearable Body-Strain Sensing.
    Liu H; Ni Y; Hu J; Jin Y; Gu P; Qiu H; Chen K
    ACS Appl Mater Interfaces; 2022 May; 14(18):21509-21520. PubMed ID: 35500100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wearable Sensors Adapted to Extreme Environments Based on the Robust Ionogel Electrolytes with Dual Hydrogen Networks.
    Hu A; Liu C; Cui Z; Cong Z; Niu J
    ACS Appl Mater Interfaces; 2022 Mar; 14(10):12713-12721. PubMed ID: 35230073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly stretchable, supersensitive, and self-adhesive ionohydrogels using waterborne polyurethane micelles as cross-linkers for wireless strain sensors.
    Lei L; Wang H; Jia Q; Tian Y; Wang S
    J Mater Chem B; 2023 Aug; 11(31):7478-7489. PubMed ID: 37455619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Self-Healing and Shape Memory Polymer that Functions at Body Temperature.
    Lai HY; Wang HQ; Lai JC; Li CH
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31487954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Healing Micellar Ion Gels Based on Multiple Hydrogen Bonding.
    Tamate R; Hashimoto K; Horii T; Hirasawa M; Li X; Shibayama M; Watanabe M
    Adv Mater; 2018 Jul; ():e1802792. PubMed ID: 30066342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stretchable, Healable, and Degradable Soft Ionic Microdevices Based on Multifunctional Soaking-Toughened Dual-Dynamic-Network Organohydrogel Electrolytes.
    Fang L; Zhang J; Wang W; Zhang Y; Chen F; Zhou J; Chen F; Li R; Zhou X; Xie Z
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56393-56402. PubMed ID: 33274913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible Zinc-Ion Hybrid Fiber Capacitors with Ultrahigh Energy Density and Long Cycling Life for Wearable Electronics.
    Zhang X; Pei Z; Wang C; Yuan Z; Wei L; Pan Y; Mahmood A; Shao Q; Chen Y
    Small; 2019 Nov; 15(47):e1903817. PubMed ID: 31609075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryopolymerized Polyampholyte Gel with Antidehydration, Self-Healing, and Shape-Memory Properties for Sustainable and Tunable Sensing Electronics.
    Wu S; Guo J; Wang Y; Xie H; Zhou S
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):42317-42327. PubMed ID: 36067465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polypyrrole-Doped Conductive Supramolecular Elastomer with Stretchability, Rapid Self-Healing, and Adhesive Property for Flexible Electronic Sensors.
    Chen J; Liu J; Thundat T; Zeng H
    ACS Appl Mater Interfaces; 2019 May; 11(20):18720-18729. PubMed ID: 31045346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanically Tunable, Readily Processable Ion Gels by Self-Assembly of Block Copolymers in Ionic Liquids.
    Lodge TP; Ueki T
    Acc Chem Res; 2016; 19(10):2107-2114. PubMed ID: 27704769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Skin-Inspired Electronics: An Emerging Paradigm.
    Wang S; Oh JY; Xu J; Tran H; Bao Z
    Acc Chem Res; 2018 May; 51(5):1033-1045. PubMed ID: 29693379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.