BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38530172)

  • 21. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study.
    Zech JR; Badgeley MA; Liu M; Costa AB; Titano JJ; Oermann EK
    PLoS Med; 2018 Nov; 15(11):e1002683. PubMed ID: 30399157
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential diagnosis of benign and malignant vertebral fracture on CT using deep learning.
    Li Y; Zhang Y; Zhang E; Chen Y; Wang Q; Liu K; Yu HJ; Yuan H; Lang N; Su MY
    Eur Radiol; 2021 Dec; 31(12):9612-9619. PubMed ID: 33993335
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Baseline whole-lung CT features deriving from deep learning and radiomics: prediction of benign and malignant pulmonary ground-glass nodules.
    Huang W; Deng H; Li Z; Xiong Z; Zhou T; Ge Y; Zhang J; Jing W; Geng Y; Wang X; Tu W; Dong P; Liu S; Fan L
    Front Oncol; 2023; 13():1255007. PubMed ID: 37664069
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Association of osteolytic lesions, bone mineral loss and trabecular sclerosis with prevalent vertebral fractures in patients with multiple myeloma.
    Borggrefe J; Giravent S; Campbell G; Thomsen F; Chang D; Franke M; Günther A; Heller M; Wulff A
    Eur J Radiol; 2015 Nov; 84(11):2269-74. PubMed ID: 26283192
    [TBL] [Abstract][Full Text] [Related]  

  • 25. External validation of a convolutional neural network algorithm for opportunistically detecting vertebral fractures in routine CT scans.
    Nicolaes J; Liu Y; Zhao Y; Huang P; Wang L; Yu A; Dunkel J; Libanati C; Cheng X
    Osteoporos Int; 2024 Jan; 35(1):143-152. PubMed ID: 37674097
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bi-parametric magnetic resonance imaging based radiomics for the identification of benign and malignant prostate lesions: cross-vendor validation.
    Ji X; Zhang J; Shi W; He D; Bao J; Wei X; Huang Y; Liu Y; Chen JC; Gao X; Tang Y; Xia W
    Phys Eng Sci Med; 2021 Sep; 44(3):745-754. PubMed ID: 34075559
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Feasibility of a generalized convolutional neural network for automated identification of vertebral compression fractures: The Manitoba Bone Mineral Density Registry.
    Monchka BA; Kimelman D; Lix LM; Leslie WD
    Bone; 2021 Sep; 150():116017. PubMed ID: 34020078
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative evaluation of benign and malignant vertebral fractures with diffusion-weighted MRI: what is the optimum combination of b values for ADC-based lesion differentiation with the single-shot turbo spin-echo sequence?
    Geith T; Schmidt G; Biffar A; Dietrich O; Duerr HR; Reiser M; Baur-Melnyk A
    AJR Am J Roentgenol; 2014 Sep; 203(3):582-8. PubMed ID: 25148160
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep learning-assisted diagnosis of benign and malignant parotid tumors based on contrast-enhanced CT: a multicenter study.
    Yu Q; Ning Y; Wang A; Li S; Gu J; Li Q; Chen X; Lv F; Zhang X; Yue Q; Peng J
    Eur Radiol; 2023 Sep; 33(9):6054-6065. PubMed ID: 37067576
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A 3D Radiomics-Based Artificial Neural Network Model for Benign Versus Malignant Vertebral Compression Fracture Classification in MRI.
    Chiari-Correia NS; Nogueira-Barbosa MH; Chiari-Correia RD; Azevedo-Marques PM
    J Digit Imaging; 2023 Aug; 36(4):1565-1577. PubMed ID: 37253895
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of deep learning on radiologists' and radiology residents' performance in identifying esophageal cancer on CT.
    Yasaka K; Hatano S; Mizuki M; Okimoto N; Kubo T; Shibata E; Watadani T; Abe O
    Br J Radiol; 2023 Oct; 96(1150):20220685. PubMed ID: 37000686
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differentiation of usual vertebral compression fractures using CT histogram analysis as quantitative biomarkers: A proof-of-principle study.
    Lv M; Zhou Z; Tang Q; Xu J; Huang Q; Lu L; Duan S; Zhu J; Li H
    Eur J Radiol; 2020 Oct; 131():109264. PubMed ID: 32920220
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of deep learning on radiologists and radiology residents in detecting breast cancer on CT: a cross-vendor test study.
    Yasaka K; Sato C; Hirakawa H; Fujita N; Kurokawa M; Watanabe Y; Kubo T; Abe O
    Clin Radiol; 2024 Jan; 79(1):e41-e47. PubMed ID: 37872026
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combining Deep Learning and Handcrafted Radiomics for Classification of Suspicious Lesions on Contrast-enhanced Mammograms.
    Beuque MPL; Lobbes MBI; van Wijk Y; Widaatalla Y; Primakov S; Majer M; Balleyguier C; Woodruff HC; Lambin P
    Radiology; 2023 Jun; 307(5):e221843. PubMed ID: 37338353
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep Learning for Automated Triaging of 4581 Breast MRI Examinations from the DENSE Trial.
    Verburg E; van Gils CH; van der Velden BHM; Bakker MF; Pijnappel RM; Veldhuis WB; Gilhuijs KGA
    Radiology; 2022 Jan; 302(1):29-36. PubMed ID: 34609196
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Joint MRI T1 Unenhancing and Contrast-enhancing Multiple Sclerosis Lesion Segmentation with Deep Learning in OPERA Trials.
    Krishnan AP; Song Z; Clayton D; Gaetano L; Jia X; de Crespigny A; Bengtsson T; Carano RAD
    Radiology; 2022 Mar; 302(3):662-673. PubMed ID: 34904871
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of Vertebral Fractures by Convolutional Neural Networks to Predict Nonvertebral and Hip Fractures: A Registry-based Cohort Study of Dual X-ray Absorptiometry.
    Derkatch S; Kirby C; Kimelman D; Jozani MJ; Davidson JM; Leslie WD
    Radiology; 2019 Nov; 293(2):405-411. PubMed ID: 31526255
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of automatic rib fracture detection on chest CT using a deep learning algorithm.
    Wang S; Wu D; Ye L; Chen Z; Zhan Y; Li Y
    Eur Radiol; 2023 Mar; 33(3):1824-1834. PubMed ID: 36214848
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reliability and Validity of Different MRI Sequences in Improving the Accuracy of Differential Diagnosis of Benign and Malignant Vertebral Fractures: A Meta-Analysis.
    Li K; Huang L; Lang Z; Ni L; Du J; Yang H
    AJR Am J Roentgenol; 2019 Aug; 213(2):427-436. PubMed ID: 31039028
    [No Abstract]   [Full Text] [Related]  

  • 40. Vertebral Body Compression Fractures and Bone Density: Automated Detection and Classification on CT Images.
    Burns JE; Yao J; Summers RM
    Radiology; 2017 Sep; 284(3):788-797. PubMed ID: 28301777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.