BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 38530350)

  • 1. Imaging analysis of six human histone H1 variants reveals universal enrichment of H1.2, H1.3, and H1.5 at the nuclear periphery and nucleolar H1X presence.
    Salinas-Pena M; Rebollo E; Jordan A
    Elife; 2024 Mar; 12():. PubMed ID: 38530350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome distribution of replication-independent histone H1 variants shows H1.0 associated with nucleolar domains and H1X associated with RNA polymerase II-enriched regions.
    Mayor R; Izquierdo-Bouldstridge A; Millán-Ariño L; Bustillos A; Sampaio C; Luque N; Jordan A
    J Biol Chem; 2015 Mar; 290(12):7474-91. PubMed ID: 25645921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic profiling of six human somatic histone H1 variants denotes that H1X accumulates at recently incorporated transposable elements.
    Salinas-Pena M; Serna-Pujol N; Jordan A
    Nucleic Acids Res; 2024 Feb; 52(4):1793-1813. PubMed ID: 38261975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. G1 phase-dependent nucleolar accumulation of human histone H1x.
    Stoldt S; Wenzel D; Schulze E; Doenecke D; Happel N
    Biol Cell; 2007 Oct; 99(10):541-52. PubMed ID: 17868027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TADs enriched in histone H1.2 strongly overlap with the B compartment, inaccessible chromatin, and AT-rich Giemsa bands.
    Serna-Pujol N; Salinas-Pena M; Mugianesi F; Lopez-Anguita N; Torrent-Llagostera F; Izquierdo-Bouldstridge A; Marti-Renom MA; Jordan A
    FEBS J; 2021 Mar; 288(6):1989-2013. PubMed ID: 32896099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping of six somatic linker histone H1 variants in human breast cancer cells uncovers specific features of H1.2.
    Millán-Ariño L; Islam AB; Izquierdo-Bouldstridge A; Mayor R; Terme JM; Luque N; Sancho M; López-Bigas N; Jordan A
    Nucleic Acids Res; 2014 Apr; 42(7):4474-93. PubMed ID: 24476918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specificities and genomic distribution of somatic mammalian histone H1 subtypes.
    Millán-Ariño L; Izquierdo-Bouldstridge A; Jordan A
    Biochim Biophys Acta; 2016 Mar; 1859(3):510-9. PubMed ID: 26477490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear and nucleolar activity of linker histone variant H1.0.
    Kowalski A
    Cell Mol Biol Lett; 2016; 21():15. PubMed ID: 28536618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordinated changes in gene expression, H1 variant distribution and genome 3D conformation in response to H1 depletion.
    Serna-Pujol N; Salinas-Pena M; Mugianesi F; Le Dily F; Marti-Renom MA; Jordan A
    Nucleic Acids Res; 2022 Apr; 50(7):3892-3910. PubMed ID: 35380694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subnuclear distribution of the entire complement of linker histone variants in Arabidopsis thaliana.
    Ascenzi R; Gantt JS
    Chromosoma; 1999 Nov; 108(6):345-55. PubMed ID: 10591994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histone H1 phosphorylation is associated with transcription by RNA polymerases I and II.
    Zheng Y; John S; Pesavento JJ; Schultz-Norton JR; Schiltz RL; Baek S; Nardulli AM; Hager GL; Kelleher NL; Mizzen CA
    J Cell Biol; 2010 May; 189(3):407-15. PubMed ID: 20439994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A light microscope study of linker histone distribution in rat metaphase chromosomes and interphase nuclei.
    Breneman JW; Yau P; Teplitz RL; Bradbury EM
    Exp Cell Res; 1993 May; 206(1):16-26. PubMed ID: 8482357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-specific regulation of histone H1 phosphorylation in pluripotent cell differentiation.
    Liao R; Mizzen CA
    Epigenetics Chromatin; 2017; 10():29. PubMed ID: 28539972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of replication-dependent and replication-independent linker histone complexes: Tpr specifically promotes replication-dependent linker histone stability.
    Zhang P; Branson OE; Freitas MA; Parthun MR
    BMC Biochem; 2016 Oct; 17(1):18. PubMed ID: 27716023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The eleven stages of the cell cycle, with emphasis on the changes in chromosomes and nucleoli during interphase and mitosis.
    Leblond CP; El-Alfy M
    Anat Rec; 1998 Nov; 252(3):426-43. PubMed ID: 9811221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histone H1 variants are differentially expressed and incorporated into chromatin during differentiation and reprogramming to pluripotency.
    Terme JM; Sesé B; Millán-Ariño L; Mayor R; Belmonte JCI; Barrero MJ; Jordan A
    J Biol Chem; 2011 Oct; 286(41):35347-35357. PubMed ID: 21852237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linker histone variant H1T targets rDNA repeats.
    Tani R; Hayakawa K; Tanaka S; Shiota K
    Epigenetics; 2016 Apr; 11(4):288-302. PubMed ID: 27018843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic characterization of the nucleolar linker histone H1 interaction network.
    Szerlong HJ; Herman JA; Krause CM; DeLuca JG; Skoultchi A; Winger QA; Prenni JE; Hansen JC
    J Mol Biol; 2015 Jun; 427(11):2056-71. PubMed ID: 25584861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The linker histone H1.2 is a novel component of the nucleolar organizer regions.
    Chen J; Teo BHD; Cai Y; Wee SYK; Lu J
    J Biol Chem; 2018 Feb; 293(7):2358-2369. PubMed ID: 29301938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arrangement of nuclear structures is not transmitted through mitosis but is identical in sister cells.
    Orlova DY; Stixová L; Kozubek S; Gierman HJ; Šustáčková G; Chernyshev AV; Medvedev RN; Legartová S; Versteeg R; Matula P; Stoklasa R; Bártová E
    J Cell Biochem; 2012 Nov; 113(11):3313-29. PubMed ID: 22644811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.