These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 38530420)
1. Selective Hydrolysis of Ovalbumin by Zr-Based Lacunary Polyoxotungstate in Surfactant Solutions. Babaei Zarch M; Bazargan M; Mirzaei M Inorg Chem; 2024 Apr; 63(14):6141-6151. PubMed ID: 38530420 [TBL] [Abstract][Full Text] [Related]
2. Interaction Study and Reactivity of Zr(IV) -Substituted Wells-Dawson Polyoxometalate towards Hydrolysis of Peptide Bonds in Surfactant Solutions. Quanten T; Shestakova P; Van Den Bulck D; Kirschhock C; Parac-Vogt TN Chemistry; 2016 Mar; 22(11):3775-84. PubMed ID: 26833582 [TBL] [Abstract][Full Text] [Related]
3. Exploring the binding mechanism of ferulic acid and ovalbumin: insights from spectroscopy, molecular docking and dynamics simulation. Chen L; Zhu M; Hu X; Pan J; Zhang G J Sci Food Agric; 2022 Jul; 102(9):3835-3846. PubMed ID: 34927253 [TBL] [Abstract][Full Text] [Related]
4. Interaction between pH-shifted ovalbumin and insoluble neohesperidin: Experimental and binding mechanism studies. Xia N; Wang C; Zhu S Food Chem; 2022 Oct; 390():133104. PubMed ID: 35561507 [TBL] [Abstract][Full Text] [Related]
5. Hydrolysis of Peptide Bonds in Protein Micelles Promoted by a Zirconium(IV)-Substituted Polyoxometalate as an Artificial Protease. Quanten T; Savić ND; Parac-Vogt TN Chemistry; 2020 Sep; 26(49):11170-11179. PubMed ID: 32515831 [TBL] [Abstract][Full Text] [Related]
6. In Silico Characterization of the Binding Modes of Surfactants with Bovine Serum Albumin. Nnyigide OS; Lee SG; Hyun K Sci Rep; 2019 Jul; 9(1):10643. PubMed ID: 31337814 [TBL] [Abstract][Full Text] [Related]
7. Investigation into the site-specific binding interactions between chlorogenic acid and ovalbumin using multi-spectroscopic and in silico simulation studies. Perumal M; Marimuthu P; Chen X J Biomol Struct Dyn; 2022 Sep; 40(14):6619-6633. PubMed ID: 33627053 [TBL] [Abstract][Full Text] [Related]
8. Mechanisms of isoquercitrin attenuates ovalbumin glycation: Investigation by spectroscopy, spectrometry and molecular docking. Zhang L; Xu L; Tu ZC; Wang HH; Luo J; Ma TX Food Chem; 2020 Mar; 309():125667. PubMed ID: 31679851 [TBL] [Abstract][Full Text] [Related]
9. Exploring the interaction mechanism of dietary protein ovalbumin and folic acid: A combination research of molecular simulation technology and multispectroscopy. Cen C; Chen J; Wang W; Zhang J; Yang X; Fu L; Wang Y Food Chem; 2022 Aug; 385():132536. PubMed ID: 35278738 [TBL] [Abstract][Full Text] [Related]
10. Decoding the conformational binding of drug mixtures on ovalbumin: An integrated multimodal network. González-Durruthy M; Rial R; Ruso JM Int J Biol Macromol; 2024 Mar; 261(Pt 2):129866. PubMed ID: 38302030 [TBL] [Abstract][Full Text] [Related]
11. Interaction of two peptide drugs with biomacromolecules analyzed by molecular docking and multi-spectroscopic methods. Fu L; Liu G; Zhao D; Yuan L; Lu K Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jul; 255():119673. PubMed ID: 33751958 [TBL] [Abstract][Full Text] [Related]
12. Selective Hydrolysis of Ovalbumin Promoted by Hf(IV)-Substituted Wells-Dawson-Type Polyoxometalate. Anyushin AV; Sap A; Quanten T; Proost P; Parac-Vogt TN Front Chem; 2018; 6():614. PubMed ID: 30619823 [TBL] [Abstract][Full Text] [Related]
13. Multispectroscopic and Computational Investigations on the Binding Mechanism of Dicaffeoylquinic Acids with Ovalbumin. Manivel P; Marimuthu P; Yu S; Chen X J Chem Inf Model; 2022 Dec; 62(23):6133-6147. PubMed ID: 36398926 [TBL] [Abstract][Full Text] [Related]
14. Molecular interaction of cyanidin-3- Ma Z; Prasanna G; Jiang L; Jing P J Biomol Struct Dyn; 2020 Apr; 38(6):1858-1867. PubMed ID: 31084417 [TBL] [Abstract][Full Text] [Related]
15. Study of the weak interaction mechanism of ovalbumin and caffeic acid using fluorescence spectroscopy and molecular dynamics simulation. Cheng W; Wang M; Li C; Xiao F; He J; Liu L; Niu H; Ma J Spectrochim Acta A Mol Biomol Spectrosc; 2023 Nov; 301():122966. PubMed ID: 37327498 [TBL] [Abstract][Full Text] [Related]
16. Efficient DNA Condensation Induced by Chiral β-Amino Acid-Based Cationic Surfactants. Pi-Boleda B; Ramisetty S; Illa O; Branchadell V; Dias RS; Ortuño RM ACS Appl Bio Mater; 2021 Sep; 4(9):7034-7043. PubMed ID: 35006936 [TBL] [Abstract][Full Text] [Related]
17. Effect of surfactants on casein structure: a spectroscopic study. Chakraborty A; Basak S Colloids Surf B Biointerfaces; 2008 May; 63(1):83-90. PubMed ID: 18155889 [TBL] [Abstract][Full Text] [Related]
18. Interaction and binding mechanism of cyanidin-3-O-glucoside to ovalbumin in varying pH conditions: A spectroscopic and molecular docking study. Fu X; Belwal T; He Y; Xu Y; Li L; Luo Z Food Chem; 2020 Aug; 320():126616. PubMed ID: 32203835 [TBL] [Abstract][Full Text] [Related]
19. Chemical Mimics of Aspartate-Directed Proteases: Predictive and Strictly Specific Hydrolysis of a Globular Protein at Asp-X Sequence Promoted by Polyoxometalate Complexes Rationalized by a Combined Experimental and Theoretical Approach. Ly HGT; Mihaylov TT; Proost P; Pierloot K; Harvey JN; Parac-Vogt TN Chemistry; 2019 Nov; 25(63):14370-14381. PubMed ID: 31469197 [TBL] [Abstract][Full Text] [Related]
20. Amino acid side chain induced selectivity in the hydrolysis of peptides catalyzed by a Zr(IV)-substituted Wells-Dawson type polyoxometalate. Vanhaecht S; Absillis G; Parac-Vogt TN Dalton Trans; 2013 Nov; 42(43):15437-46. PubMed ID: 24018583 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]