These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38530505)

  • 1. In vitro demetalation of central magnesium in various chlorophyll derivatives using Mg-dechelatase homolog from the chloroflexi Anaerolineae.
    Sato S; Hirose M; Tanaka R; Ito H; Tamiaki H
    Photosynth Res; 2024 Apr; 160(1):45-53. PubMed ID: 38530505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure and reaction mechanism of a bacterial Mg-dechelatase homolog from the Chloroflexi Anaerolineae.
    Dey D; Nishijima M; Tanaka R; Kurisu G; Tanaka H; Ito H
    Protein Sci; 2022 Oct; 31(10):e4430. PubMed ID: 36173179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mg-dechelatase is involved in the formation of photosystem II but not in chlorophyll degradation in Chlamydomonas reinhardtii.
    Chen Y; Shimoda Y; Yokono M; Ito H; Tanaka A
    Plant J; 2019 Mar; 97(6):1022-1031. PubMed ID: 30471153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Demetalation kinetics of natural chlorophylls purified from oxygenic photosynthetic organisms: effect of the formyl groups conjugated directly to the chlorin pi-macrocycle.
    Hirai Y; Tamiaki H; Kashimura S; Saga Y
    Photochem Photobiol Sci; 2009 Dec; 8(12):1701-7. PubMed ID: 20024167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Demetalation kinetics of chlorophyll derivatives possessing different substituents at the 7-position under acidic conditions.
    Hirai Y; Kashimura S; Saga Y
    Photochem Photobiol; 2011; 87(2):302-7. PubMed ID: 21143484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into the structure and function of the rate-limiting enzyme of chlorophyll degradation through analysis of a bacterial Mg-dechelatase homolog.
    Dey D; Dhar D; Fortunato H; Obata D; Tanaka A; Tanaka R; Basu S; Ito H
    Comput Struct Biotechnol J; 2021; 19():5333-5347. PubMed ID: 34745453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-dependent demetalation kinetics of chlorophyll a analogs under acidic conditions.
    Saga Y; Hirai Y; Sadaoka K; Isaji M; Tamiaki H
    Photochem Photobiol; 2013; 89(1):68-73. PubMed ID: 22827616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mg-dechelation of chlorophyll a by Stay-Green activates chlorophyll b degradation through expressing Non-Yellow Coloring 1 in Arabidopsis thaliana.
    Sato T; Shimoda Y; Matsuda K; Tanaka A; Ito H
    J Plant Physiol; 2018 Mar; 222():94-102. PubMed ID: 29425814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chlorophyll a is a favorable substrate for Chlamydomonas Mg-dechelatase encoded by STAY-GREEN.
    Matsuda K; Shimoda Y; Tanaka A; Ito H
    Plant Physiol Biochem; 2016 Dec; 109():365-373. PubMed ID: 27810676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic analysis of the demetalation kinetics of zinc chlorophyll derivatives possessing different substituents at the 3-position: effects of the electron-withdrawing and electron-donating strength of peripheral substituents.
    Saga Y; Kobashiri Y; Sadaoka K
    Inorg Chem; 2013 Jan; 52(1):204-10. PubMed ID: 23230816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arabidopsis
    Shimoda Y; Ito H; Tanaka A
    Plant Cell; 2016 Sep; 28(9):2147-2160. PubMed ID: 27604697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral signatures of five hydroxymethyl chlorophyll a derivatives chemically derived from chlorophyll b or chlorophyll f.
    Sawicki A; Willows RD; Chen M
    Photosynth Res; 2019 Apr; 140(1):115-127. PubMed ID: 30604202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substitution effects in the A- and B-rings of the chlorin macrocycle on demetalation properties of zinc chlorophyll derivatives.
    Hirai Y; Sasaki S; Tamiaki H; Kashimura S; Saga Y
    J Phys Chem B; 2011 Mar; 115(12):3240-4. PubMed ID: 21355613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of magnesium by Mg-dechelatase is a major step in the chlorophyll-degrading pathway in Ginkgo biloba in the process of autumnal tints.
    Tang L; Okazawa A; Fukusaki E; Kobayashi A
    Z Naturforsch C J Biosci; 2000; 55(11-12):923-6. PubMed ID: 11204197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demetalation of chlorophyll pigments.
    Saga Y; Tamiaki H
    Chem Biodivers; 2012 Sep; 9(9):1659-83. PubMed ID: 22976960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partial purification of chlorophyll degrading enzymes from cavendish banana (Musa Cavendishi).
    Janave MT; Sharma A
    Indian J Biochem Biophys; 2004 Aug; 41(4):154-61. PubMed ID: 22900346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome analysis in petals and leaves of chrysanthemums with different chlorophyll levels.
    Ohmiya A; Sasaki K; Nashima K; Oda-Yamamizo C; Hirashima M; Sumitomo K
    BMC Plant Biol; 2017 Nov; 17(1):202. PubMed ID: 29141585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Horizontal Transfer of Promiscuous Activity from Nonphotosynthetic Bacteria Contributed to Evolution of Chlorophyll Degradation Pathway.
    Obata D; Takabayashi A; Tanaka R; Tanaka A; Ito H
    Mol Biol Evol; 2019 Dec; 36(12):2830-2841. PubMed ID: 31432082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Stay-Green Rice like (SGRL) gene regulates chlorophyll degradation in rice.
    Rong H; Tang Y; Zhang H; Wu P; Chen Y; Li M; Wu G; Jiang H
    J Plant Physiol; 2013 Oct; 170(15):1367-73. PubMed ID: 23816327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of molecular structures on reduction properties of formyl groups in chlorophylls and pheophytins prepared from oxygenic photosynthetic organisms.
    Sadaoka K; Kashimura S; Saga Y
    Bioorg Med Chem; 2011 Jul; 19(13):3901-5. PubMed ID: 21664826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.